- ‘
* > e:#e

NASA Technical Memorandum 104579

Radar Ocean Wave Spectronieter (ROWS)
Preprocessing Program (PREROWS2.EXE)

User's Manual and Program Description

Charles R. Vaughn

January 1993 -

(NASA-TM-104579) RADAR OCEAN WAVE N93-20160
SPECTROMETER (ROWS) PREPROCESSING

PROGRAM (PREROWSZ2.EXE). USER?®S

MANUAL AND PROGRAM DESCRIPTION Unclas
(NASA) 90 p

G3/48 0147552

I L.

il . \ . ;
1 A MO

NASA Technical Memorandum 104579

Radar Ocean Wave Spectronieter (ROWS)
Preprocessing Program (PREROWS2.EXE)

User's Manual and Program Description

Charles R. Vaughn

Laboratory for Hydrospheric Processes
Wallops Flight Facility

Wallops Island, Virginia

National Aeronautics and
Space Administration

Wallops Flight Facility
Wallops Island, Virginia 23337

1993

1.0

2.0

3.0

4.0

5.0

6.0

TABLE OF CONTENTS

INTRODUCTION

USER INSTRUCTIONS
2.1 DOS menu

2.1.1 DOS menu FK3 functions
2.2 EXABYTE menu

2.2.1 EXABYTE menu FK2 functions
2.3 Merge GPS, INS and ROWS data

2.3.1 General merging instructions

2.3.2 INS data '

2.3.3 GPS Latitude and Longitude data
2.4 Waterfall display color codes

2.5 Log tape

RECORD FORMAT
3.1 Raw data record format

3.2 Data types for modified data
DISCUSSION

PROGRAM DESCRIPTION

REFERENCES

APPENDIX I: PROGRAM SOURCE CODE

22

25

26

iii

PRECEINNG PAGE . ANK MOT FILMED

'
pipa L L wrenmonay AR

1.0 INTRODUCTION

The Radar Ocean Wave Spectrometer (ROWS) is an airborne radar system that measures the
backscattered radar signal from the ocean’s surface. Jackson et al. (1985) describe the radar
subsystem, while Ward (1992) describes the recent modifications to the data acquisition
subsystem. The data acquisition subsystem records ROWS data and auxiliary data in a sequence
of 1024 byte records on an 8 mm digital tape using an EXABYTE 8200. Each of the 1024 byte
records includes a header, 700 bytes of radar signal, time, the radar antenna rotation angle (shaft
angle), aircraft pitch and roll from the aircraft INS, and the time delay between the time of radar
pulse firing and the time recording starts.

PREROWS?2 (for PREprocessing of ROWS data, version 2) is a compiled pc program written in
Microsoft QuickBasic 4.5. The program allows previewing a ROWS data tape for data quality,
copying of appropriate sections of data to a DOS file, and the subsequent reviewing of these
DOS files. PREROWS?2 is a modified version of PREROWS and is written for the ROWS data
acquisition subsystem as improved for use with the Grand Banks ERS-1 SAR validation mission.
Most of the features of PREROWS2 can be used with the earlier data. However, there will be
some problems with the data presentation; as will be readily evident if the program is used for
these earlier missions.

The copy feature provides for transferring a sequence of records from the 8 mm tape to a DOS
file on a pc. This is usually advantageous for intensive data review and processing because of
the relatively slow output speed of the EXABYTE. In addition, if the operator wants to step
backwards through a file, the EXABYTE 8200 is prohibitively slow, whereas the operation is
very quick with a random access device.

The location of the aircraft as determined by a GPS receiver, and some of the outputs from the
aircraft INS system, were available for recording. These data are not yet recorded directly into
the ROWS data stream; rather they are recorded independently on a separate pc. In each data
record, more than 150 unused bytes exists that can be used for ancillary data. A provision exists
in PREROWS?2 to merge the separately recorded data with the ROWS data onto a new data tape.

The user should remember that PREROWS?2 is not a polished commercial program. There are
many areas where, time and value permitting, improvements can be made. In addition, each
mission usually has its own peculiarities that require program modifications. The discussion that
follows highlights some of the general features that can be improved and some of the specific
code that is deficient in some way. Program areas that may require continuing maintenance, such
as the MERGE feature are discussed in detail.

2.0 USER INSTRUCTIONS

PREROWS?2 operates on either an EXABYTE file taken with the ROWS radar, or on a ROWS
file copied from the original 8 mm tape to a pc hard disk. This program is menu driven with the

following primary functions:
1. Produce a time log of an EXABYTE tape.
2. Locate any record within a ROWS file that exists on tape or in a DOS file.
3. Copy a block of records from an EXABYTE tape to a DOS file.

4. Convert time and aircraft pitch and roll on an 8 mm tape file to ASCII values and
output to a DOS file. The output is an average of 100 successive pulses.

5. Produce successive screen displays of radar waveforms annotated with ancillary
data such as aircraft pitch and roll, radar antenna rotation angle, radar trigger
delay, and both system time and pc "tick" time.

6. Produce a "waterfall" screen display of radar waveforms.

7. Merge an original ROWS 8 mm tape with INS, GPS, and other data onto a second
8 mm tape.

These functions are explained more fully below.

[NOTE: PREROWS?2 implements procedures for use with the ERS-1 SAR validation
mission. The earlier missions SAXON and SWADE should be processed with PREROWS;
the predecessor to the present version. If PREROWS2 is used with these earlier missions,
the user should be aware that certain features won’t work and others might show spurious

results.]

When first run, PREROWS?2 displays an information box and ten small highlighted boxes at the
bottom. These boxes represent the ten function keys FK1 through FK10. This highest level menu
allows the user to select the source of the data file. Use FK2 or FK3 to select a DOS or
EXABYTE file respectively. The information box is blank in this menu because no data source
has been selected.

[NOTE: The EXABYTE must be turned on before pressing FK3. If an EXABYTE is not
on, the computer will lockup and have to be rebooted.]

Two other function keys are active: FK9 presents a display of the version and date of the
program being run; FK10 exits the program and returns operation to DOS.

After selecting a file source, new function key selections are shown. These new selections allow
a user to perform several activities. The selections available from the highest level DOS and

EXABYTE menus are described next.

2.1 DOS menu

The sole purpose of this menu is to allow opening or closing a file, or to calling another menu
where actual processing can be done. When first entering this menu from the main menu (or after
selecting FK9 at this level), the information box is essentially blank. The record pointer is at -1
to indicate that no DOS file is open. The ten function keys now provide the following choices:

FK1: MainMnu

Returns to the MAIN MENU.
FK2: OpnFile

Allows operator to open a DOS data file. The program stays at this menu level but
now displays the complete file path and name, file starting and stopping times, the
total number of records in the file, the present record number, and the time
associated with this record. The record number cannot be changed at this menu
level. FK3 is used to change the record number.

[NOTE: The program error trapping for entry of the name of a non-existent

file is faulty. The program will recover properly by hitting the ENTER key
a number of times.]

FK3: PreProc

Goes to another menu that allows selection of the record number for processing,
display of the radar waveform in oscilloscope fashion, and display of the radar
waveform in a color coded waterfall display.

FK4 - 8: NOT USED

FK9: CisFile
Closes any open DOS file.

FK10: EXIT

Exits the program and returns to the DOS prompt.

2.1.1 DOS menu FK3 functions

The DOS PreProc function key accesses another screen that defines a new set of operations for
the keys. Two of these operations display the radar waveform on the computer screen. The

function keys provide the following operations:

FK1: DosMen
Returns to the DOS menu.
FK2: NOT USED

FK3: Rec #N

Selects a record number at which to start other operations.
FK4: NOT USED

FK5: Wtrfal

Produces a waterfall display of ROWS waveforms starting with the active record.
Three pieces of information are needed after making this selection: the starting
and ending byte numbers for the display and which of six (at present) color
selections to use for the display. The color selections will be discussed below. The
starting and ending byte numbers are referenced to the radar waveform itself; ie.,
byte 1 is the first radar waveform byte (which will be byte 51 in the actual
record); the highest byte number allowed is 700.

The maximum number of bytes that can be displayed on each waveform is 420.
If the difference between the stopping and starting points on the waveform is
greater than 420, the end of each waveform will be dropped.

FKé6: DspDat

Displays a single ROWS waveform and annotates it with ancillary data. The
operator can select to step singly through a file by pressing the keyboard f key;
or, by pressing ALT-f the program steps automatically through the file. Once past
the first record, the file can be displayed in reverse order by pressing the keyboard
b key to backup a single record, or ALT-b to continuously display backwards

through the file.

After pressing FK6, you are asked to enter the first and last bytes for display. The
byte range for a waveform is from one to 700. The speed of display depends on
the number of bytes to be shown.

[NOTE: There is no error trapping for an input byte number greater than
700; the program will crash if the ending byte is greater than 700. Also, there
is no error trapping if the starting byte number is greater than the ending

FK7 -

byte number.]

9: NOT USED

FK10: EXIT

Exits the program and return to the DOS prompt.

2.2 EXABYTE menu

This highest level EXABYTE menu differs from the highest level DOS menu in that processing
can be initiated; tape logging and tape merging are done here. The processing activities that
parallel the DOS activites are accessed by the PreProc key, just like they are under the DOS
menu. The ten function keys now provide the following:

FK1: MainMnu

Returns to the MAIN MENU.

FK2: PreProc

FK3 -

Goes to another menu that allows selection of the file number and record number
for processing, display of successive radar waveforms in oscilloscope fashion,
display of radar waveforms in a color coded waterfall display, copying a block of
records from the EXABYTE to a DOS file, decoding and copying time and
aircraft pitch and roll angles to a DOS file, and merging an original EXABYTE
data tape with ancillary data (GPS, INS etc. data) to a second EXABYTE.

4: NOT USED

FKS: LogExb

Logs all files on a tape. The log gives the starting and ending time of each file
and the number of records in each file. The information for each file includes the
starting and starting times of each continuous sequence of records within the file
and the number of records in the sequence. The output goes to a DOS file and the
screen. See section 2.5 for more details.

FKé6: NOT USED
FK7: Merge

Merges INS, GPS, and other ancillary data with ROWS data on an EXABYTE

tape. The merge requires an ASCII file with file name information and radar gain
settings. The merge is done to a second EXABYTE. See section 2.3 for details.

FK8: NOT USED
FK9: Initize

Reinitializes the EXABYTE tapé decr:ikr.r
FK10: EXIT

Exits PREROWS2 and return to the DOS prompt.

2.2.1 EXABYTE menu FK2 functions
This selection provides functions that parallel those of FK3 under the DOS menu.

[NOTE: The first time this menu appears after a new tape has been put in the EXABYTE,
FK2 should be selected and a file number entered. This should be done even if FILE #1 is
being used and a one appears as the file number in the information box. In certain
circumstances, the record number counter is off if this selection isn’t done first.]

Besides those functions that parallel the DOS functions, this selection provides for copying a
block of records from the tape to a DOS file, and for creating a time sequence of a 100 pulse
average of aircraft pitch and roll that is output to a DOS file.

FK1: MainMnu
Returns to the previous menu
FK2: File N

Moves the readhead to the beginning of file number N on the tape. If there are
less than N files on the tape, the read head SHOULD be positioned to the end of
the last file on the tape. The menu display should show the correct file number,
stopping time, and total records for the file. The file starting time will not be
shown until record 1 is selected and the tape is actually positioned there.

[NOTE: If the tape is positioned to a file other than #1, and FK2 is chosen
AND FILE #1 then chosen, a tape rewind will be performed and all
EXABYTE pointers reinitialized. This is a good way to reset pointers if the

record number or file number showing on the display don’t seem to be

correct.]

FK3: Rec #N

Selects the record number within a file. If the selected number is greater than the
number of records in the file, the tape will stop at the end of the last record in the
file, the total number of records displayed, and the ending time of the file
displayed correctly.

[NOTE: If a record number is chosen that is less than the present record
number, the EXABYTE will move backward VERY SLOWLY to the proper
record number. Always move forward through a tape unless it is absolutely
necessary to do otherwise.]

FK4: CpyFile

Copies a sequence of records from an 8 mm tape to a DOS file. You will be
asked to supply a starting and ending record number for copying.

The starting record number can be before the number where the tape drive
readhead is currently located. If it is, read the NOTE above for FK3.

FKS: WtrFall

Produces a color coded waterfall display of the received waveform signal strength.
The display starts with the current record number. Three pieces of information are
needed: the starting and ending byte numbers for the display and the color
selection (one of six) to use for the display. The color selections will be discussed
below. The starting and ending byte numbers are referenced to the radar waveform
itself; ie., byte 1 is the first radar waveform byte, (byte 51 in the actual record).

The maximum number of bytes (radar samples) that can be displayed on each
waveform is 420. If the difference between the stopping and starting bytes on the
waveform is greater than 420, the waveform will be truncated.

FK6: DspData

Displays a single ROWS waveform and annotates it with ancillary data. The first
waveform will be the record where the read head is presently located. Read the
section above for DspData using a DOS file for additional information.

The display can be paused at the end of a waveform by pressing the keyboard p.
Any subsequent key will resume plotting. Anytime a plot is being produced, you
can abort plotting and return to the calling menu by pressing ESC.

[NOTE: Plotting does not terminate properly at the end of a file. Plotting
continues beyond the end-of-file mark (or beyond the end of data if no EOF
is present) and the record counter continues incrementing. If such a situation
arises, hit ESC. It will then be necessary to reset everything by either going
back to file #1 or by returning to the previous menu and doing a RESET.]

FK7: PtchRol

Converts time, and aircraft pitch and roll in an 8 mm tape file to ASCII values
and outputs to a DOS file. Pitch and roll are averaged for one second.

FKS8 - 9: NOT USED
FK10: EXIT

Exits PREROWS2 and return to the DOS prompt.

2.3 Merge GPS, INS and ROWS data

During the ERS-1 SAR validation mission, GPS and INS data were collected and saved in pc
files separate from the actual ROWS data. Additionally, a notebook was used to record
information that is necessary for processing the radar data. The original ROWS data is saved in
a continuous sequence of 1024 byte records on EXABYTE tapes. The records have sufficient
unused bytes that they can accommodate the relevant parts of the GPS, INS, and notebook data.

These instructions pertain to the MERGE feature of the program PREROWS2.BAS. This feature
provides for merging data from an original ROWS Exabyte tape with INS and GPS data that are
in pc files. The merged files are stored on tape on a second Exabyte. In addition to the INS and
GPS data, there is a provision to include a mission name, date and takeoff time, along with a
time bias between the clocks that recorded time for the INS file and the ROWS file. Finally,
there is a provision to include IF gain data during the merge.

2.3.1 General merging instructions
The following five steps are necessary to do a proper merge:
1. Set up two EXABYTE tape drives for use.
Two EXABYTE drives are needed on the same SCSI line. The drive from which

the original ROWS data is being read must be set to SCSI address 5. The drive
to which the merged data is written must be set to address 0.

2. Create a merge information file.

Create a file that contains information about the mission. This file tells the merge
routine where to find the other data files and provides additional information that
can be used for later tape identification and data processing. A sample MERGE
information file looks like this:

ERS-1 Nfnd* Mission name (10 characters maximum)
11\14\91* Mission date -
23:35* Mission takeoff time (UTC)
D:AERS111114\PM\1114P.INS* INS data file name
D:\ERS1\1114\PM\1114P.GPS* GPS data file name
35* INS ahead of ROWS by 35 seconds (decimal secs)
23:59:10 28% *

01:21:30 26* Table for total system IF gain.
01:22:26 29* *

A minimum of seven lines MUST be present for a good merge and they must be
in the order shown above. Some of the lines may be left blank, but they must be
included. A more detailed description of the seven lines follows:

Line 1:

Line 2:

Line 3:

Lines 4 & 5:

Line 6:

Lines 7 -:

An appropriate name, no longer than 10 character, can be given to the
mission. It is useful to give a name so that the merged tape can be
identified at a later date if its label is lost.

The mission date should be the date corresponding to the UTC of the
airplane takeoff time.

The airplane takeoff time is in UTC. It doesn’t need to be very accurate,
but it should be earlier than the first ROWS data.

These are the pc file names of the GPS and INS data respectively. It is a
good idea to include the complete DOS path with the file name. It is not
necessary to have INS or GPS data. Just leave blank lines where necessary.

The ROWS pc and the INS pc each records time from its own clock. If
there is a bias between these two clocks it can be cormrected during the
merge. In general, the bias cannot be determined without comparing the
pitch or roll data from the two sources and determining any phase shift
between them.

Starting at line 7 ROWS the total system IF gain can be included with the
merge. The time of a gain change is recorded in the first column and the
gain in the second. There must be at least one space between the two
columns. The first gain is the gain when the mission begins. If the first
gain isn’t known, enter a -99. A maximum of 100 gain changes per

9

mission can be accommodated.

The program requires that the first times in the INS and GPS files and the aircraft
takeoff time in the Information file not differ by more than 1* 59™.

It is not necessary to include the comments (or the asterisk, if there is no
comment). However, at least one space must exist after the last character of
the actual data (or file name) even if no comment exists. If some of the data is
missing it is probably a good idea to include a few spaces and then an asterisk
and comment to the effect that there is no data. At least one line must exist that
represents system gain, even if the gain is unknown.

3 Insure that the INS data that covers the period of time of the 8 mm tape is in one
pc file,

The INS data for a single flight must be in a single pc file. If the data is located
in several file, it is necessary to concatenate the files into one file. It is important
that the files be concatenated in correct time sequence.

4. Edit the GPS data file to eliminate "spurious" records,
The GPS data for a single flight must be in a single pc file. If the data is located
in several file, it is necessary to concatenate the files. It is important that the data
be concatenated in correct time sequence. An occasional GPS file will have what
appears to be a spurious line at the top of the data. Any spurious data lines must
be removed before the program will work correctly.
S. Run the merge program.
a. Run PREROWS2.
b. From the MAIN MENU select Function Key 3 (EXABYTE).
c. From the EXABYTE menu select Function Key 7 (MERGE).
d. Enter the name of the MERGE INFORMATION FILE.
The program will now merge the original ROWS tape with the available data identified in the
merge information file. Each ROWS record is read and decoded. Ancillary data is similarly read
and decoded and then time synchronized with the ROWS record. Be aware that this process takes

about 10 times longer than the time it took to record the original data. Thus, if there are several
hours of data on the original tape, merging will take 10 times several hours!

10

Each merged tape file(s) record includes the following:

1. Raw, unprocessed, ROWS radar return;

2. Antenna gain (IF attenuation);

3. "Corrected" antenna shaft angle;

4. "Con;ected" pc real-time without the spurious FF FF bytes that occurred;

[NOTE: After this program was written it was discovered that other spurious
real-time words can occur. The user should be aware of the possibility they
may exist.]

5. GPS latitude and longitude;
6. INS block of 10 words presently stored on floppy disk;
7. pc "tick time" stored as an eleventh word with the INS data;
8. A "NO DATA" indicator (FF FF or -32768) for missing data;
9. A modified header that properly reflects the above record structure.
10. The mission name and date.
[NOTE: The mission name and date are stored in the last 18 bytes of each
record. The existence of this information is not recognized by the header. See
section 4.0 below for more information.]
After the last record of the original data tape is read and written to the merged tape, an EOF will
be written to the new tape.
2.3.2 INS data
INS data from a digital Litton 92 was recorded on a separate pc during the ERS-1 SAR
underflights. A DAS-429PC/HC interface card from Excalibur Systems Inc was used in the pc.
The 32 bit word format in the pc file is dictated by the Excalibur interface. The specification is
taken from page 9 of the DAS-429PC/HC manual.
The format of a 32 bit INS data word adheres to the ARINC standard; 20 bits represent data, 4

bits represent status, and parity, and the remaining 8 bits specify a data label. The
DAS-429PC/HC reformats each ARINC word as follows:

11

BYTE 1 BYTE 2 BYTE 3 BYTE 4

pc ARINC pc ARINC pc ARINC pc ARINC
bit bit bit bit bit bit bit bit
7 Data 13 7 Label 01 7 Sign 29 7 Data 21
6 Data 12 6 Label 02 6 Data (MSB) 28 6 Data 20
5 Data (LSB) 11 5 Label 03 5 Data 27 5 Data 19
4 Data (or SDI) 10 4 Label 04 4 Data 26 4 Data 18
3 Data (or SDI) 9 3 Label 0s 3 Data 25 3 Data 17
2 SSM status 31 2 Label 06 2 Data 24 2 Data 16
1 SSM status 30 1 Label 07 1 Data 23 1 Data 15
0 Parity status 32 0 Label 08 0 Data 22 0 Data 14

Each data word is a maximum of 20 (or 18) bits plus the sign bit. Within the 32 bit word, these
20 (or 18) bits are obtained by taking bytes 3, 4 and 1 in that order with the most significant bit
(MSB) as the sign of the data. The data bits need to be right justified in the new 32 bit data
word. The 20 bit words use bits 4 and 3 of byte 1 as the least significant bits of the new 32 bit
data word. For the present data set, only BCD latitude and longitude use the 20 bit word format.
The 10 ARINC data words, and their word order on disk are:

decimal hex description # Range Resolution
label (bits)

8 08 BCD Ilatitude 22 -90,+90 0.1 min

9 09 BCD longitude 22 -180,+180 0.1 min
202 CA gmd speed (bin) 15 0-4095 0.125 kts
203 CB track angle 15 -180,+180 0.0055 deg
204 CC true heading 15 -180,+180 0.0055 deg
212 D4 pitch angle 15 -180,+180 0.0055 deg
213 D5 roll angle 15 -180,+180 0.0055 deg
241 F1 altitude 20 -131072, 131072 0.125 ft
214 D6 pitch rate 15 -128,+128 0.0055 deg/sec
215 D7 roll rate 15 -128,+128 0.0055 deg/sec

Time is recorded with each INS record. This time is the "tick" time in the pc that records the INS
data. The INS pc real-time clock is set each day by voice call from one of the airplane crew who
reads a master clock. The time used is UTC. At the time the real-time clock is set, the "tick" time
is automatically reset to the correct count by the computer. During a mission, the same procedure
is followed simultaneously with the ROWS computer clock. However, during data reduction the
time synchronization between the ROWS and INS data has to be done using the real-time clock
in the ROWS data records. The "tick" time from the ROWS pc cannot be used because it loses
excessive amounts of time through interrupts during the actual data acquisition process.

23.3 GPS Latitude and Longitude data

PREROWS?2 assumes that the GPS data file is formatted using the NMEA Global Positioning

12

Satellite Position data format, which is ASCII. A typical line of data in the GPS NEMA format
reads:

$GPGGA,124559.0,4855.9774,N,05434.0569,W,1,6,01.4,+99,M,+000,M

A comma delimits the data fields. The second field is time in hours, minutes, and seconds,
without delimiters. The third field is latitude, the fourth indicates whether latitude is north or
south. The fifth field is longitude, the sixth indicates whether longitude is east or west. Latitude
and longitude are in degrees and minutes with no delimiter between. The above line is interpreted
as 12 hours 45 minutes, 59.0 seconds with a position of 48 degrees 55.9774 minutes North
latitude, 054 degrees 34.0569 West longitude. The remaining fields are ignored by this program.

Data in the GPS pc file is updated once per second on the GPS second. At present (1992) GPS
time is running ahead of UTC by 8 seconds. This time difference must be compensated for when
merging GPS with other data sets having time recorded as UTC. This time difference is written
into the subroutine TimeGPSS$.

The MERGE subroutine converts GPS latitude and longitude into minutes of arc as a long signed
integers (32 bits) with the least significant bit representing 0.0001 minutes of arc. Thus, a sample
GPS output

4855.9774,N,05434.0569,E,
is converted to 32 bit integers as

(48 x 60 + 55.9774) x 104 x (+1) = 29359774
(54 x 60 + 34.0569) x 10*4 x (-1) = -32740569

With the first byte in a ROWS record defined as number one (as opposed to zero), latitude and
longitude are merged with the 1024 byte ROWS record. Latitude starts at byte 769 and longitude
starts at byte 773. '

Before the GPS data can be integrated with the ROWS data, time needs to be synchronized
properly between the two data sets. GPS data is recorded once per second; ROWS 100 times per
second. The merged tapes will have GPS data recorded only once per second; the intervening
GPS values are represented by a "no data" word (FF FF FF FF). This procedure presents a
problem for later data processing. Section 4.0 discusses the problem.

2.4 Waterfall display color codes
The radar data is digitized by an 8 bit A/D converter, thus giving a range of integers from 0 to

255. Within the QuickBasic 4.5 language, a VGA monitor can display 16 colors. PREROWS2
has six color selections, each defining the integer intervals to be displayed by the 16 colors. The

13

subroutine Levels defines the integer ranges for the six selections. The choice of levels for the
integer ranges was based on actual waterfall plots; the choices being made based on the visual
appearance of the plot. Table I shows the color selections and the associated integer ranges that

go with each color:

TABLE 1
COLOR SELECTIONS i
COLOR 1 2 3 4 5 6

Black 0-8 0-9 0-10 0-10 0-15 0-10
Blue 9-14 10-11 1 11-14 16-30 11-12
Green 15-16 12-13 - 12 15-16 31-50] 1314
Cyan 17-18 14-15 13 17-18 51-60 15-16
Red 1921 16-17 14 19-20 61-70 17-18
Magenta 22-24 18-19 15 21-22 71-80 19-20
Brown 25-26 20-21 16 23-24 81-85 21-23
White) 27-29 22-23 17 25-26 85-90 24-27
Gray 30-32 24-25 18 7 27-28 91-95 28-30
Lt Blue 33-37 26-27 19-20 29-30 96-100 31-35
Lt Green 38-42 28-29 21.22 31-33 101-110 36-40
Lt Cyan 43-48 30-31 23-24 34-35 111-120 41-45
Lt Red 49-56 32-33 25-26 36-45 121-130 46-50
Lt Magenta 57-63 34-35 2740 46-55 131-140 51-60
Yellow 64-70 36-50 41-60 56-80 141-220 61-75
Bright White 70-255 51-255 61-255 81-255 221-255 76-255

2.5 LOG TAPE

One of the first things to do after a mission is to produce a listing of the times data was acquired.
This is accomplished with the LOGEXB function key (FKS5) in the first EXABYTE menu. The
tape log subroutine skips in increments of 100 records when looking for time breaks. This saves
considerable time while doing the log because only one out of 100 records has to be decoded.
Because the program skips 99 records, a time break in a recording sequence can only be
determined to within +49 records. In addition, for the worst case, the number of records in a
sequence can be off by as much as 198 records, or about two seconds in time. Since the log is
only used to indicate the approximate location of breaks in the data, this imprecision shouldn’t

14

cause a problem. If more precision is required in locating such breaks, it can be obtained by
stepping through a file one record at a time using FK3 (Rec #N) and looking for time jumps on
the display. The following is a sample of a tape log:

FILE NUMBER: 1

Start Time Stop Time Start Stop Number

pe tick pctick Rec# Rec# Recs
01:39:37 01:39:34.02 1 2 2
01:39:45.23 01:51:58.54 101 73302 73202
01:54:31.45 02:00:23.08 73401 108461 35061

End of file.

Start Time: 01:39:37 Stop time: 02:00:23
Total Records: 108561
END OF DATA.

[NOTE: The program does not give the exact numbers for the Stop Record # and Record
length (ie., number of records) for the last continuous sequence of records in a file. If there
is only one long sequence of non-broken continuous records in a file, these numbers MAY
be correct. In any case, the Starting Time, Stopping Time, and Total Records information
at the end of each file should be correct. If any numbers are incorrect, the errors should
be small; ie., record numbers may be in error by one or two and the time by less than 0.1
secs.]

There is a potentially serious problem with the ROWS data recording that will not be easily
detected with the logging subroutine. The subroutine relies on the pc "tick" timer to determine
the time between two records that are 100 records apart. However, the "tick" timer looses time
if another device interrupts the computer from updating the timer. At the same time, the computer
interrupt can prevent new records (radar pulses) from being recorded. If this happen, there will
still be 100 records per second recorded, but the real time gap will be greater than one second.
This happens, in particular, when the EXABYTE tries to write to a bad spot on tape. The write
time can exceed many timer counts. The seriousness of this problem has not been fully explored.

3.0 RECORD FORMAT

ROWS records contains a header, the backscattered radar signal from a single radar pulse, and
a variety of ancillary data. The structure of each record consists of a header terminated with two
ff(hex) bytes, followed by data in the same sequence as the definitions in the header. The header
is composed of a sequence of pairs of two byte (16 bit) integers that designate the type of data
recorded (first integer) and the number of bytes allocated to that data type (second integer).

3.1 Raw data record format

15

The following data types and lengths are defined for the raw recorded data starting with the
ERS-1 mission:

TYPE LENGTH TYPE DEFINITION
(bytes)
0000 50 The header
0001 700 ROWS radar return waveform
0002 4 Pc clock "tick time"
0003 2 Waveform digitizer trigger delay
0004 5 Time from pc real-time clock
0006 2 Aircraft roll angle
0005 2 Aircraft pitch angle
0007 1 Antenna shaft "angle" (No data recorded)
0008 2 Antenna shaft angle
0009 4 Observer latitude
0010 4 Observer longitude
0011 80 INS data
ffff 0 Empty data type (header terminator)

856 (total bytes presently defined in the 1024 byte record)
The header itself uses the first 50 bytes of each record (two bytes each for the 12 data types plus
two bytes for the terminator). After the header are the 806 data bytes defined by the header. The
remaining 168 (1024 - 856) bytes are not used. Note that the data types do not need to be

recorded in a monotonically increasing order; but, if the order is changed, the header also needs
to be rearranged to reflect this new order.

The data types have the following formats:
TYPE description
0000 The header
0001 ROWS radar return waveform.

700 radar samples from an 8 bit A/D converter. The samples are saved as
successive 8 bit binary integers.

0002 Pc clock "tick time".

Number of pc clock "ticks" since midnight as determined by the data acquisition
computer. There are approximately 18.20648 clock ticks per second. The result is
stored as a 32 bit (4 byte) binary integer.

16

0003

0004

0006

0005

0007

0008

0009

Waveform digitizer trigger delay.

The time delay from the radar pulse transmission ("main bang) to the start of
waveform digitizing. The delay is determined with a 10 MHz clock (thus
providing a resolution of 100ns) and is recorded as a 16 bit integer. This delay

corresponds to the range from the aircraft to the first recorded point on the ROWS
radar return waveform.

Time from pc real-time clock.

A five byte field is reserved for time, although only three bytes are used for pc
time. The encoding format is binary coded decimal (BCD). Byte 5 (right most)
represents hours; byte 4, minutes; byte 3, seconds. Bytes two and one are not used
(they are reserved for the possibility that another time code may be used in place

of the pc real-time clock.) The actual data encoding is for the two nibbles of each
byte to be the binary representation of the two digits of each time unit.

Aircraft roll angle.

12 bit integer representing 1/(2"12) of 360 degrees or 0.08789 th of a degree.
Aircraft pitch angle.

12 bit integer representing 1/(2°12) of 360 degrees or 0.08789 th of a degree.
Antenna shaft "angle"

This data type is a carryover from earlier ROWS missions when the full shaft
angle word was not available. At present, nothing is recorded here, although the
header indicates otherwise.

Antenna shaft angle.

The rotation angle of the ROWS antenna is obtained from a 14 bit shaft angle
encoder whose output is in BCD format with a resolution of 0.1 degrees. The four
nibbles represent hundreds of degrees, tens of degrees, degrees, and tenths of a

degree. Bits 15 and 16 are not used by the encoder.

[NOTE: Bit 15 flags which antenna is used for that record. The altimeter
horn is indicated by a 1, the scanning antenna by a zero (0).]

Observer latitude.

Not yet directly available to ROWS.

17

0010 Observer longitude

Not yet directly available to ROWS.

0011 Inertial Navigation System (INS) data.

Not yet directly available to ROWS.

[Note: This data type represents more than one piece of data. The INS data
type has its own internal structure which, for the merged data, at least,
contains eleven variables.]

3.2 Data types for modified data

In principle, the integer designating a data type can be arbitrary within the range of the two bytes
allocated for it. However, it seems useful to reserve a group of integers for a specific class of
data. The classes suggested are "raw ROWS collected data", "raw ROWS data after some type
of preprocessing", "raw ancillary data merged after flight with the ROWS data", and "merged

?

ancillary data that has been processed". Various miscellaneous data types can be assigned
numbers outside the range of numbers assigned to the broader classes.

Type range
00000 - 00998

01000

00999

01001 - 09999

10000 - 10999

21001 - 29999

18

Description

Original ROWS collected data.

Designates ASCII text that is entered either during, or after, the
mission for purposes of annotation.

Flags a file of original data that has been selected so that it only
contains a time contiguous sequence of consistent "good" data.
Length is 0

Raw ancillary data.

Original ROWS data after some type of preprocessing. The last
three digits should be the same as those of the original data. The
particular type of processing can be indicated by the second digit
from the left. This typing method evidently allows 10 different
methods for processing a particular data type before some other
arbitrary type needs to be assigned.

Processed ancillary data of types 01001 - 09999.

The actual data types, length (in bytes), and formats used for the merged data are:

TYPE LENGTH DESCRIPTION

01001 1

01009 4

01010 4

01011 80

10020 4

10021 1

Antenna gain in dB (IF attenuation) from flight log sheets.

Latitude from GPS.

A signed long integer with South latitude represented by a negative
number. The integer will represent one-ten thousandth of a degree of arc.
Thus, one degree will be represented as 100000. The largest number that
needs to be represented is + 90 degrees, which is * 9000000 in the
suggested format.

Longitude from GPS with West longitude represented as a negative
number. The largest number will be * 90 degrees. See latitude format for
more information.

INS data including independent pc ’tick’ time.

This data type contains a block of eleven words, ten taken from the LTN-
92/ARINC-429 digital output from the aircraft INS, and one taken from the
pc "tick" timer in the pc that recorded the ARINC data. The data format
will be the same as recorded on the disk file (ie., no format changes are
made).

pc real-time clock data with spurious hex FF FF words set to the correct
time.

A spurious FF FF time word can appear at the start of a new second of
time. It is not clear which second (the previous one or the new one) this
belongs with. However, at a ROWS update rate of 100 pulses per second,
the assignment of the spurious FF FF to the previous time will be adequate.

Antenna shaft angle with the one degree bit corrected for dropouts.

Several bits from the shaft angle encoder don’t operate. This data type
results from a correction algorithm for the angle. The accuracy of the
correction remains to be determined. However, it is probably better than +
0.4 degrees of arc. Bit 15 still flags the antenna type that obtained the data
for the record.

19

4.0 DISCUSSION

PREROWS2.EXE is a "working" program, subject to modifications as the need arises. As such
it is an evolutionary product. The immediate predecessor to this program, PREROWS, started in
late 1990. Because of the evolutionary nature of the program, there are obvious pieces of
unneeded code, non-uniformity of code structure, half written subroutines, and other symptoms
of non-top down development. Future modifications of a substantive nature will primarily be
needed only as dictated by a change in the actual ROWS hardware. It should be mentioned that
PREROWS is still needed for looking at the data tapes collected prior to August of 1991.

There are several additions to PREROWS2 that might be effected for future missions, even if no
overall hardware changes occur. Starting with the ERS-1 SAR validation mission, the ROWS
transmitter/receiver switches, on a pulse-to-pulse basis, between a fixed nadir pointing antenna
(altimeter mode) and the off-angle scanning antenna. Thus, a ROWS data file has altimeter mode
data interleaved with azimuthally scanning mode data. PREROWS?2 thus displays interleaved
waterfall or waveform displays that are difficult to interpret. For both the waterfall and waveform
displays, a choice should be given to present the data from one antenna or the other.

At present the altimeter mode data is separated from the azimuthally scanned data using a stand
alone program that splits the data into two pc files. Each file can then be looked at using
PREROWS?2. The ability to separate these two data types into two files should be made part of
the COPY feature (FK4: CpyFile, under section 2.2.1 above).

The ROWS data acquisition software does not presently put an EOF at the end of a recorded file;
nor does it insert an EOF whenever the radar is shut off but the tape recorder left on. (This
causes a large time gap between successive records.) Because of this, a single ROWS tape file
can be many hundreds of megabytes long with time gaps occurring throughout. Since there are
not presently any ROWS tapes with multiple files on them, PREROWS2 software hasn’t been
tested for possible "bugs" while using a multiple file tape. In addition, the merge feature of
PREROWS?2 does not have the capability of merging more than one file onto a single tape. If
future missions have multiple files on a tape, PREROWS2 will have to be modified accordingly.

Most of the subroutines in the present program do not read the header to determine which data
types are present; they assume a series of specific data types in a specific order. A more flexible
program would read the header and decode the data as indicated by the data type. The tapes
produced with the MERGE feature have several data types that differ from the raw data.
PREROWS?2 processes the data properly because the modified record contains the same variables
(corrected for errors, etc.) with the same lengths and in the same places as the original header
defines. The main purpose of defining these particular data types is to make some hypothetical
future user of the tape aware that s/he is not working with the raw data.

The method used to merge GPS data with the ROWS data has one major drawback. GPS data
is only merged with the record that corresponds to the closest exact second at which it is
recorded. Thus, there are 99 records without GPS data for each one with data. Later, when data

20

is separated into two files, one with altimeter data, the other with the scanning antenna data, there
can be very long stretches without GPS data in one of the two files. In fact, if there were an
exact even number of pulses per second, all GPS data would be merged into one or the other of
the separated file, leaving one file without any GPS data.

For future ROWS operations, more attention should be given to properly using the header in each
record. To date, most of the data analysis software doesn’t anticipate future needs. Most of this
software demands a header with 50 bytes and data located exactly where the original ROWS
acquisition software put it and with the same format. This rigidity defeats the purpose of having
a header. For instance, the merge program allows a project name and date to be put in a data
record. Unfortunately there is no room within the 50 header bytes to flag the existence of this
information. The merged records have a project name and date located in bytes 1007 through
1024; unacknowledged by the header and potentially unappreciated by some future user of the
tapes. In addition, several of the variables in a merged tape record can have a varying type
throughout the file. This will happen, for instance, with the real-time when the FF FF has been
corrected, or with the shaft angle for those angles that have been corrected.

The tape logging subroutine should be changed to use anything other than the "tick" timer as a
time source. One approach would be to use the real-time clock and count the number of pulses
that occur between two successive seconds. If the count deviated by more than some allowable
amount (+ 2) then the data for that second could be discarded.

5.0 PROGRAM DESCRIPTION

PREROWS2.EXE is a Microsoft QuickBasic 4.5 compiled program. The Microsoft library
BRUN45.LIB and a library of routines to interface with the EXABYTE 8200 tape deck have
been linked with the PREROWS2 source code to produce a single program. More than 90
subroutines are comprised in the program. Access to the EXABYTE 8200 is provided through
the library of QuickBasic routines written by APtek, Inc. of Rockville, MD.

The main program defines the data structures, declares the subroutines and functions, dimensions
the global variables (including four variables from the two data structures), five constants, and
two string variables, and then calls one subroutine in an infinite loop.

One data structure (FileStats) holds the filename (for a DOS file), a file number (for a tape file),
the current record number, the total records in a file, a pointer to the present byte in a record,
and the starting and ending times of a file.

The second data structure (Dta) defines variables that hold the decoded data from a 1024 byte
data record. As presently written, this data structure rigidly defines the variable types and lengths.
If any of the data string lengths change (for instance, if the header length changed from 50 bytes,
or the INS data were longer than 80 bytes), then this data type would have to be changed and
the program recompiled.

21

Most of the subroutines have some internal documentation. This section will only highlight those
routines most likely to be affected by future changes in the ROWS hardware. For the most part,

the discussion of the subroutines follow alphabetically.

FUNCTION ADTriggerDelay returns the time delay between the time of transmission of a radar
pulse and the start of the A/D converter. The delay is returned as meters below the
airplane. The actual delay is determined by a simple counter. There is a count bias of 74
units written into the program to accommodate a hardware induced bias of the same
amount. If the hardware bias is changed, this subroutine will have to have its bias

changed.

SUB AsclIPitchRoll provides a time sequence of aircraft pitch and roll from a file on 8 mm
tape. Pitch and roll are averaged over 100 records and output to a DOS file a one sample
per second. The average can be altered by changing the value of the variable NAve% in

the subroutine.

FUNCTION ClockTime$ presently returns Dta.TrueTime, which is the time as recorded from
the pc real-time clock. Most routines that need time call ClockTime$. If a time source
other than the pc real-time clock is available for display or data processing, it is only
necessary to have ClockTime$ return this new time. This indirect way of accessing time
saves the labor of searching all routines for a specific time (Dta.TrueTime, for instance)
and replacing that specific time with the new time.

Dta also provides the variables Dta.TickTime, which is the time returned by the pc "tick"
timer, and Dta.AccurateTime. This latter time was provided by an external time code
generator for missions prior to the ERS-1 SAR Validation Mission, and did not exist after
August, 1991. Since Dta.AccurateTime was recorded in the same byte locations
Dta.TrueTime, it is necessary to insure the correct time is used with the particular
mission be looked at. The forerunner program to PREROWS2 uses Dta.AccurateTime.

SUB DataTypes is part of a package of subroutines that will be used to read a header and
process the data according to the data types specified by that header. It is incomplete and
not used.

SUB DecodeHeader translates the header string into a two dimensional short integer array with
each row having the numerical data type and the number of bytes in that type.

SUB DecodeRecord assigns the individual variables in a ROWS record to the data structure Dta.
SUB DosFile defines the highest level DOS menu.

SUB DosPreProcessing defines the menu that calls some of the actual data manipulation
subroutines. There are presently five undefined function keys in this menu that can be

used to perform additional operations.

22

SUB ExbFile is the companion subroutine to DesFile and defines the highest level EXABYTE
menu.

SUB ExbPreProcessing is the companion subroutine to DosPreProcessing. There are only two
undefined function keys available for additional operations.

SUB ExbStatus is provided to interpret all the status codes return by the EXABYTE drive after
it has been accessed. This routine has not been completed and is not presently use.

SUB ExbTapeLog has been explained in some detail in section 2.5 above.

SUB FileN moves the EXABYTE readhead to the file number that is entered. At present there
is only one file on any ROWS 8mm tape. If a larger file number is chosen the tape drive
will search until the end-of-data (EOD) is encountered.

SUB GPSDisplay simply prints, if present, the GPS latitude and longitude on the radar
waveform displays. At present GPS only exists in a ROWS record if it has been merged
with the record.

SUB GPSLatLong strips GPS latitude and longitude from a GPS NEMA data format record.
Details of the GPS format and other related information is contained in section 2.3 above

FUNCTION IntergerTIME converts a time string that is in hours, minutes, and seconds with
delimited by colons (:) into seconds as a long integer.

SUB MERGE should be useable to correct errors in ROWS data and save the corrected records
to the new tape - even if no INS or GPS files are available for merging. PREROWS2
hasn’t been tested to see if all subroutines will work properly if no INS or GPS file
names are available. However, if there are program "bugs" that prohibit "merging" in this
manner, they should be easy to fix. With the present structure of PREROWS?2 it seems
MERGE is the most logical place to do real data preprocessing in a bulk mode.

FUNCTION NameDATE is used by MERGE to put a mission name and date onto the new tape
As noted in section 4.0 this information "hangs out" in a region of a ROWS record that
is not recognized by the header as having information.

FUNCTION NewHEADER rigidly defines the header structure of a merged data tape. As
mentioned in several sections above, this rigidity should be removed in some future

version of this program.
SUB ParameterDisplay recognizes the GPS merged data type and displays the data, if present

The subroutine needs to have code added to recognize the other data types present on a
merged tape, and to read and display the mission name and date, if added.

23

FUNCTION PitchRoll has a 120 degree bias "correction" written in because of miswiring of the
shaft angle encoder. This subroutine will have to be changed if the wiring is corrected.

SUB PlotRadReturn sets up the logic for using either a DOS file or EXABYTE file, for moving
stepping single or continuously through a file, or for stepping forwards or backwards (for
a DOS file). The actual plotting is done in the two subroutines StepForwards and
StepBackwards.

SUB PresentFile prints the file status information to the screen. The routine doesn’t presently
recognize the merged data types.

FUNCTION ShaftAngle partially corrects for a serious error in the recorded data from the shaft
angle encoder. The correction is only performed in the MERGE subroutine.

FUNCTION TimeGPS has an 8 second subtraction from GPS time to synchronize it with UT.
This correction may have to be updated for future missions.

SUB Waterfall plots very slowly. If increased speed is required it may be necessary to write
an assembly language routine to write directly to video ram. This routine should be
written so that it can be linked with PREPROWS2 during compilation.

6.0 REFERENCES

Jackson, F. C., W. T. Walton, and P. L. Baker. 1985. "Aircraft and Satellite Measurements of
Ocean Wave Directional Spectra Using Scanning-Beam Microwave Radars. J.G.R., 90: 987-1004.

Ward, J. L. 1992. A PC-Based Data Acquistion System as Applied to the Radar Ocean Wave
Spectrometer, NASA Technical Memorandum 104560.

24

APPENDIX I: PROGRAM SOURCE CODE

This section contains the PREROWS2 source code. Additional comments have been added to the
original program. These are printed in a bold italic font.

> PREROWS2.BAS (PREprocessing of ROWS data) [crv 10/13/92]
* QuickBASIC source code for reading from or writing to a ROWS "standard”

’ 1024 byte record data file. The file can be either a DOS file or a

* file on an EXABY'TE streaming tape.

' The "standard" format starts with a header that describes the subsequent

* DATA bytes in the record. The header has pairs of integers (2 bytes each),

* the first designating a data type, the second designating the number of

* data bytes used by that type. The sum of the number of bytes in the header

> plus the bytes in all the data types must equal 1024,

' The Aptek QuickBasic library qbx.lib is needed for proper compilation
* of this program.

OPTION BASE 1

TYPE FileStats
FileName AS STRING ¢ 40 ’ The filename with directory and path cannot be longer than 40 characters.
FileNo AS INTEGER
Record AS LONG
TotalRecords AS LONG
ByteLoc AS LONG
TStart AS STRING * 8
TEnd AS STRING * 8
END TYPE

TYPE Dua
Header AS STRING * 50 * The present header is fixed at 50 characters.
Radar AS STRING * 700
AccurateTime AS STRING * 11 * It is probably not a good idea to use a data structure for the decoded
TickTime AS STRING * 11 * variables. The problem with this approach is that it lacks flexibility if
TrueTime AS STRING * 8 ' more data needs to be added to a ROWS recard.
TriggerDelay AS SINGLE
Pitch AS SINGLE
Roll AS SINGLE
ShaftAngle AS SINGLE
ConShaftAngle AS SINGLE
Latitude AS SINGLE
Longitude AS SINGLE
InsData AS STRING * 80 * The INS data word is limited to 80 characters.
END TYPE

DECLARE SUB AsclIPitchRoll () * Time, pitch, roll to separate ASCII file.
DECLARE SUB BegEndByte (A%, B%) '
DECLARE SUB Blank () -
DECLARE SUB CheckExbStatus (A%) '

DECLARE SUB ColorLevels () * Define oolors for waterfall display.

DECLARE SUB CopyDosToDos () * This feature hasn’t been implemented

DECLARE SUB CopyExbToDos () ’

DECLARE SUB DataTypes () ' Display the types of data.

DECLARE SUB DecodeHeader (HS) * This subroutine hasn’t been completed. It's presently unused.
DECLARE SUB DecodeRecord () * Decodes the 1024 byte data record.

DECLARE SUB DfaKy (AS) * Define the function keys.

DECLARE SUB DosFile () ' DOS will be the source device.

25

DECLARE SUB DosPreProcessing ()
DECLARE SUB DriveReady ()
DECLARE SUB EndOfData ()
DECLARE SUB EnterFileName (AS, BS)
DECLARE SUB EnterRecord (A&)
DECLARE SUB ExbFile ()

DECLARE SUB ExbPreProcessing ()
DECLARE SUB ExbReset (A%)
DECLARE SUB ExbSiatus (A$, B%)
DECLARE SUB ExbTapeLog ()
DECLARE SUB FileN ()

DECLARE SUB FileOpen (A$)
DECLARE SUB FirstMenu ()
DECLARE SUB FkSet (AS()
DECLARE SUB GPSDisplay (AS)
DECLARE SUB Help2

DECLARE SUB IDLE ()

DECLARE SUB IFGains (F%, TTo&, GT&()

' Display the DOS preprocessing menu.

* Test if EXABYTE drive is ready.

* Advance the EXABYTE tape to the end of data
* Keyboard entry of DOS filename.

* An EXABYTE tape has the source file.

* Reset the EXABYTE tape deck.

* Sense code definitions for EXABY'TE.

* Produce complete EXABYTE tape log.

' Advance the EXABYTE tape to file N.

' Check if DOS file is already open.

* Main Menu.

' Set the function key names.

' Displays GPS data on waveform display.
' Help menu for PlotRadReturn

' Pause program uatil operator keystroke.

DECLARE SUB INFOFILE (MN$, MD$, MT&, GT&(), IFNS, GFNS, ITL!)

DECLARE SUB Keystroke (A%)
DECLARE SUB LastRecord ()
DECLARE SUB Levels (A%)
DECLARE SUB MERGE ()

DECLARE SUB MergeGPS (MS, S&, R1&, R2&, G&, GF%)

* Trap keyboard keystrokes.
* Set file to the final record.
* Selects the waterfall display colors.

* Merges aw ROWS data on one EXB tape with INS, GPS, and

* IF Gain data onto a second EXB tape.

DECLARE SUB MergeINS (MRS, MHS, ST&, RT2#, InsT#, InsF%, InsTLS)

DECLARE SUB Message (A%, BS)

DECLARE SUB MINMAX (A&(), N, x&, Xi, Y&, Yi)
DECLARE SUB NoFite ()

DECLARE SUB OpenExistingFile ()
DECLARE SUB OpenNewFile (AS)

DECLARE SUB ParameterDisplay
DECLARE SUB PlotRadReturn ()

DECLARE SUB PresentFile ()

DECLARE SUB ProcessMenu ()

DECLARE SUB ReadRecord ()

DECLARE SUB RecordN ()

DECLARE SUB ResetDosStats ()

DECLARE SUB ResetDua ()

DECLARE SUB ResetExbStats ()

DECLARE SUB ResetActiveStats ()

DECLARE SUB Rewind ()

DECLARE SUB STARTINGTIME (S&, M&, 1&, G&)
DECLARE SUB StepBackwards (A%, B%, C%)
DECLARE SUB StepForwards (A%, B%, C%)
DECLARE SUB Update ()

DECLARE SUB ValidROWSFile (AS, B%)
DECLARE SUB Version ()

DECLARE SUB Waterfall ()

DECLARE SUB WaveFormPlot (A%, B%)
DECLARE SUB WriteRecord (F$, F%)

DECLARE FUNCTION AccurateTime$ (A$)
DECLARE FUNCTION ADTriggerDelay& (AS$)
DECLARE FUNCTION ByteLoc& ()
DECLARE FUNCTION ClockTime$ ()
DECLARE FUNCTION ColorSelection% (}
DECLARE FUNCTION FKeyOnly$ ()

' Display color message.

' Find the maximum and minimum values of a set of numbers.

* No file open warning.

" Open a DOS ROWS file.

' Open a new DOS file for results output.
' Display for PlotRadReturn

* Plot radar return waveform.

' Display open file stats.

' Display the processing menu.

' Read a new data record.

* Set file to record N.

* Initialize DOS variables.

* Initialize decoded data variables.
* Initialize Exb variables.

* Initialize operating variables.

' Rewind EXABYTE tape deck.

' Used by MERGE to time synchronize GPS, INS, and ROWS files.

* Step backward through DOS file.

* Step forward through DOS or EXB file.

' Update the screen display

' Check is file is valid ROWS file.

' Display the PREROWS version and date.

' Color coded waterfall display of pulses.

* Plot radar waveform.

* Write a ROWS record to a DOS or EXB file.

* Decode the external box time iato hh:mm:ss.
* Decode the A/D converter trigger time delay
* Calculates the byte pointer in the active file.
* Selects AccurateTime or PcTime for display.
* Color planes for waterfall display.

* Select a function key from the menu.

* Finds latitude and longitude from a GPS data file.

* Converts hours, minutes, and seconds to decimal seconds.

' Return keyboard scancode.

' Insert the mission name and date into a merged ROWS file,

DECLARE FUNCTION GPSLatLong$ (LLS)
DECLARE FUNCTION IntegerTIME& (T$)
DECLARE FUNCTION KeyCode% (AS)
DECLARE FUNCTION NameDATES (NS, DS$)

26

DECLARE FUNCTION NewHEADERS ()
DECLARE FUNCTION PcClockTime$ (AS)
DECLARE FUNCTION PcTime$ (A%)
DECLARE FUNCTION PitchRoll! (AS)
DECLARE FUNCTION TimeGPS& (DS$)
DECLARE FUNCTION RotationAngle! (AS)
DECLARE FUNCTION ShaftAngle$ ()

DIM SHARED ColorLevel(0 TO 255) AS INTEGER
DIM SHARED FileSource AS STRING * 3

DIM SHARED Headen(2, 20) AS INTEGER

DIM SHARED IERR AS INTEGER

DIM SHARED Level(0 TO 14) AS INTEGER

DIM SHARED NewRecord AS STRING * 1024

PREROWS2.BAS (cont.)
* Constructs a new ROWS header.
* Decode the pc real-time clock.
* Decode the pe tick time into hh:mm:ss.ss
* Convert aircraft pitch and roll to decimal degrees.
* Find time from a GPS file,
* Decode the shaft angle of rotation.
* Corrects the raw shaft angle.

* DOS or EXABYTE?
* Col 1, type; col 2, length B
* Contains the ervor code returned from the most recent EXABYTE call.

* This is THE ROWS record

DIM SHARED RowOffSet AS INTEGER, ColOffSet AS INTEGER

DIM SHARED SenseStatus(0 TO 25) AS INTEGER
DIM SHARED Active AS FileStats

DIM SHARED Dos AS FileStats

DIM SHARED Exb AS FileStats

DIM SHARED Dta AS Dta

DIM SHARED NoData AS STRING * 2
DIM SHARED NoDatalong AS STRING * 4
CONST TicksPerSec = 18.20648#

CONST BlankLine$ = "

NoData$ = MKI$(-9999)

NoDatalLong$ = MKL$(-999999999)

CONST HeaderLength% = 50

CONST ReadDriveld% = 5

CONST WriteDriveld% = 0

SCREEN 0
CLs

ResetActiveStats
ResetDosStats
ResetExbStats
ResetDta
FileSource$ =" "
DO

FirstMenu

LOOP

END

BadFileName:

Message 17, "ILLEGAL FILENAME or "
Message 18, "File doesn’t exist.”
RESUME NEXT

* Contains the status of the EXABYTE after the most recent operation.

* Three variable have the data structure FileStats, Active contains the
* information from the currently active file, variables Dos and Exb contain
* the information from whichever (or both) file(s) are open.

> Define the Dia variable to be the structure Dia.

* Computer clock ticks per second.

> 9999 indicates no data in 2 byte data string.
* 999999999 indicates no data in a four byte data string.

* Length of record header.

* SCSII ID for drive being read from.
* SCSII ID for drive being written to.

27

-

]
’

¢¢¢¢+ BEGIN SUBROUTINES ****

Decodes the time delay between the radar mainbang and the triggering
of the A/D converter. The result is given in meters below the aircraft.

The delay is affected in bardware by counting down in a 16 bit
register from FFFF hex. Including the bias mentioned below, the
conversion of the delay to range can be done by representing the
integer as a 4 byte string and then converting it to a signed

long integer as shown below.

CALLed by: DecodeRecord

FUNCTION ADTriggerDelay& (Bytes$)

FUNCTION ADTriggerDelay&

Bias% = 74! * System induced bias to time delay (up through 7/25/91)

IF Active.Record = 1 AND FileSource$ = "DOS" THEN
ADTriggerDelay& = 0
ELSE

Count& = CVL(Bytes$ + CHR$(0) + CHR$(0))
ADTriggerDelay& = 50 * .15 * (65535 - Count& - Bias%)

END IF

END FUNCTION

28

’ Convert time, and aircraft pitch, and roll in a ROWS EXABYTTE file to ASCI] values. Time is formatted as
* hh:mm:ss and pitch and roll are formatted as decimal degrees. Since the ROWS records data 100 times per second,
* the pitch and roll are averaged over NAve% = 100 records. The output is to a DOS file at one record per second.

* CALLed by ExbPreProcessing
SUB AsclIPitchRoll
DIM StartRecord AS LONG, StopRecord AS LONG, Skip AS LONG

NAve% = 100 * Number of records to average. _
Active = Exb

PresentFile
Message 17, "Eater the name of the output file"
OpenNewFile FileName$

IF LEN(FileName$) = 0 THEN

EXIT SUB
ELSE

OPEN FileName$ FOR OUTPUT AS #1
END IF

LOCATE 18, 1: PRINT BlankLine$
Dos.FileName = FileName$

Active FileName = Exb.FileName
RecordN

Update

StartRecord& = Active.Record - 1

DO
LOCATE 18, 1: PRINT BlankLine$
StopRecord = 0
Message 17, "Eater the last record number to copy
EaterRecord StopRecord
IF StopRecord < StartRecord& THEN
Message 15, "ILLEGAL ENTRY"
SLEEP 1
LOCATE 15, 1: PRINT BlankLine$
END IF
LOOP WHILE StopRecord < StartRecord&

Format$ = “WHH#H R I HEE AHHEET
PitchSum& = 0

RollSumé& = 0

AngleConvert! = 360 / (1! * NAve% * (2 * 14))
k% = NAve% - 1

DO WHILE Active.Record <= StopRecord

FOR i = Active.Record TO Active.Record + k%
CALLS XRCHR(NewRecord, 1, IERR%)
Active.Record = Active.Record + 1
RoliSum& = RollSum& + CVL(MID§(NewRecord, 762, 2) + CHR$(0) + CHR$(0))
PitchSum& = PitchSum& + CVL(MID$(NewRecord, 764, 2) + CHR$(0) + CHR$(0))
NEXT

Hrs$ = HEX$(CVI(MIDS(NewRecord, 757, 1) + CHR$(0)))
Min$ = HEXS(CVI(MID$(NewRecord, 758, 1) + CHRS$(0)))
Sec$ = HEXS(CVI(MIDS(NewRecord, 759, 1) + CHR$(0)))
Seconds& = VAL(HrsS) * 3600 + VAL(Min$) * 60 + VAL(SecS$)

SUB AscIIPitchRoll

29

SUB AscIIPitchRoll (coat.)
PitchAve! = 120! - AngleConvert! * PitchSum&
RollAve! = 120! - AngleConvert! * RollSum&
PRINT #1, USING Format$; Seconds&; PitchAve!; RollAve!
PitchSum& = 0
RollSum& =0

IF (IERR% AND 128) OR (IERR% AND 64) OR (IERR% AND 8) THEN EXIT DO
DecodeRecord
Update

LOOP -

Active.ByteLoc = ByteLoc
DecodeRecord
CLOSE #1

Update
END SUB

SESSPFPRRPOR RG0SR RS SRR C RSN ANBPEIEBIERAANIRRRRNNRNBIRSVRGRORN L2020 225502304S

SUB BegEndByte
* Allows user input of the starting sample (byte) number of the radar waveform for use with waveform plotting.
' The waveform has a total of 700 points on a single returned waveform.

* CALLed by: PlotRadReturn; Waterfall
SUB BegEndByte (W(Start%, WiStop%)

CLs

LOCATE 13, 16

PRINT "Eater the beginning and ending byte numbers (separated by a”
LOCATE 14, 16

PRINT "comma) that you want to plot from each radar waveform.”
LOCATE 15, 30

INPUT ; WfStart%, WiStop%

CLs

END SUB

SABABES RG0S EPSAPABIINRISVBEREIRSERTNNIRIPPRARLBAREREDASIRINEIEES ARSNGB EBL OSSO RSE0S0RGRIENREE

SUB Bold
’ CALLed by: DosFile
' This routine probably doesn’t need to be used, or , if it is, it should
' be used more consistently.
SUB Blank

Message 17, "This function key does nothing."

END SUB

30

FUNCTION ByteLock
Calculates the byte location of the readhead (EXABYTE) or file
pointer (DOS file) in an open file.

CALLed by: ASCIIPichRoll; CopyExbToDos; DosPreProcessing;
ExbPreProcessing; ExbTapelog; OpenExistingFile;
StepBackwards; Waterfall
FUNCTION ByteLoc&
ByteLoc = (Active.Record - 1) * 1024 + 1
END FUNCTION

PESCESESEISSRESB0CCEESERSNNRONIEUNRNUCUNICRESOIROTRICEPRBRIRUNIRIPERERRERIRIIESEIBEININENEIRNINRISIEIRRISISSE

SUB CheckExbStatus
' CALLed by: PlotRadReturn

SUB CheckExbStatus (S5%)
SELECT CASE S5%
CASE 128
VIEW PRINT
LOCATE 25, 28
PRINT "END OF FILE #"; Active.FileNo
IDLE
EXIT SUB
CASE 8
VIEW PRINT
LOCATE 25, 28
PRINT "End of data. No EOF on last file.”
CASE 2
CLS
PRINT "EXABYTE NOT READY"
IDLE
EXIT SUB
CASE 0
CASE ELSE

PRINT "SenscStatus(2) = "; SS%
IDLE

END SELECT

END SUB

31

' Returas the time of the present file record. This function is used

' throughout the program so that any change in byte locations for the
' system time will only require an addition here and the addition of an
' appropriate subroutine that does the actual time determination.

* CALLed by: CopyExbToDos; ExbPreProcessing; ExbTapelog;
’ FileN; GPSDisplay; MERGE;

' OpenExistingFile; ParameterDisplay; PcClockTime;
' PresentFile; RecordN; Update;

’ Waterfall

FUNCTION ClockTime$

ClockTime$ = Dta. AccurateTime
*Accurate” Time was recorded pre-August 1991

' ClockTime$ = Dta. TickTime

! TickTime is taken from the pc internal tick counter
! that counts the number of ticks since the previous

i midaight. A standard pc has 18.20648 ticks per

’ second.

ClockTime$ = Dta. TrueTime
’ TrueTime is taken from the internal pc real-time
' clock.

END FUNCTION

32

FUNCTION ClockTime$

' Define the color levels assigned to the 8 bit integer data values for waterfall display color coding.

' CALLed by: Waterfall

SUB ColorLevels

Levels ColorSelection%

FOR i = 0TO 255
SELECT CASE i

CASE 0 TO Level%(0)
ColorLevel(i) = 0

CASE Level%(0) + 1 TO Level%(1)
ColorLevel(i) = 1

CASE Level%(1) + 1 TO Level%(2)
ColorLevel(i) = 2

CASE Level%(2) + 1 TO Level%(3)
ColorLevel(i) = 3

CASE Level%(3) + 1 TO Level%(4)
ColorLevel(i) = 4

CASE Level%(4) + 1 TO Level%(5)
ColorLevel(i) = 5

CASE Level%(5) + 1 TO Level%(6)
Colorlevel(i) = 6

CASE Level%(6) + 1 TO Level%(7)
ColorLevel(i) = 7

CASE Level%(7) + 1 TO Level%(8)
ColorLevel(i) = 8

CASE Level%(8) + 1 TO Level%(9)
ColorLevel(i) = 9

CASE Level%(9) + 1 TO Level%(10)
ColorLevel(i) = 10

CASE Level%(10) + 1 TO Level%(11)
ColorLevel(i) = 11

CASE Level%(11) + 1 TO Level%(12)
ColorLevel(i) = 12

CASE Level%(12) + 1 TO Level%(13)
ColorLevel(i) = 13

CASE Level%(13) + 1 TO Level%(14)
ColorLevel(i) = 14

CASE IS > Level%(14)
ColorLevel(i) = 15

END SELECT

NEXT
END SUB

* Select the color levels

'BLACK

'BLUE

"GREEN

"MAGENTA

'BROWN

"WHITE

'‘GRAY

’LIGHT BLUE

'LIGHT GREEN

'LIGHT CYAN

'LIGHT RED

'LIGHT MAGENTA

'YELLOW

"BRIGHT WHITE

SUB ColorLevels

33

FUNCTION ColorSelection

* Allows user selection of which color level array to use for plotting a waterfall display.

' CALLed by: ColorLevels
FUNCTION ColorSelection®
MaxSelection! = 6! ' Defines the total number of color coded
' arrays that have been defined in the
* subroutine Levels.
DO

Message 17, "Which color selection do you want?"
Message 18, "1 through” + STR$(MaxSelection!)
k$ = INPUTS(1)
C% = VAL(KkS)
LOOP WHILE C% > MaxSelection! AND C% < 1!
ColorSelection® = VAL(KS)

END FUNCTION

34

Copy a sequence of records from an EXABYTTE file to a DOS file.
CALLed by: ExbPreProcessing

[MODS.: 1/10/92; corrected read/write loop to copy all desired records, including the last one.
: 7/01/92; took out inline code to write records to the DOS file and put code in a subroutine.]

]
’
’
’
’
1

SUB CopyExbToDos
DIM StartRecord AS LONG, StopRecord AS LONG, Skip AS LONG

Active = Exb
PresentFile
Message 17, "Eanter the name of the file you waat to COPY to"
OpenNewFile FileName$
FileNo% = FREEFILE
IF LEN(FileName$) = 0 THEN
EXIT SUB
ELSE
OPEN FileName$ FOR BINARY AS #FileNo%
END IF
LOCATE 18, 1: PRINT BlankLine$
Dos.FileName = FileName$
Active.FileName = Exb.FileName
RecordN

DO
LOCATE 18, 1: PRINT BlankLine$
StopRecord = 0
Message 17, "Enter the last record number to copy”
EnterRecord StopRecord
IF StopRecord < StartRecord& THEN
Message 15, "ILLEGAL ENTRY"
SLEEP 1
LOCATE 15, 1: PRINT BlankLine$
END IF
LOOP WHILE StopRecord < StartRecord&

DO WHILE Active.Record <= StopRecord + 1
WriteRecord "DOS", FileNo%
IF IERR% AND 128 THEN EXIT DO
ReadRecord
DecodeRecord
Update

LOOP

Active.ByteLoc = Byteloc

Exb = Active

Dos.TotalRecords = LOF(1) / 1024
Dos.TEnd = ClockTime$

SEEK #FileNo%, 1

FileSource$ = "DOS"

ReadRecord

DecodeRecord

Dos.Record = 2

Dos.TStart = ClockTime$
Dos.ByteLoc = (Dos.Record - 1) * 1024 + 1
FileSource = "EXB"

Active = Exb

END SUB

SUB CopyExbToDos

35

SUB DataTypes
’ [NEEDS WORK] At present this routine is not used.

* Define the type of data stored in each data type within a 1024 byte record.
: CALLed by: [not yet used]
SUB DataTypes

DIM DataType$(0 TO 99)

DataType$(0) = "HEADER"
DataType$(1) = "UNPROCESSED RADAR RETURN"
DataType$(2) = "COMPUTER CLOCK 'TICKS’ SINCE MIDNIGHT"
DataType$(3) = "DIGITIZER TIME DELAY FROM RADAR FIRING"
DataType$(4) = "EXTERNAL CLOCK TIME (high precision)”
DataType$(5) = "AIRCRAFT PITCH ANGLE"
DataType$(6) = "AIRCRAFT ROLL ANGLE"
DataType$(7) = "ANTENNA SHAFT 'ANGLE""
DataType$(8) = “"CORRECTED’ ANTENNA SHAFT *'ANGLE""
DataType$(9) = "OBSERVER LATITUDE"
DataType$(10) = "OBSERVER LONGITUDE"
DataTypeS(11) = "INS DATA"
DataType$(12) = "*
DataType$(13) = "*
DataType$(14) = ™"
DataType$(15) = ™
DataType$(16) =
FOR i =1TO 16
PRINT DataTypeS(i)
NEXT i
SLEEP §
END SUB

36

-

SUB DecodeHeader

* Decode the ROWS header record into a 2xn dimensional integer array, where n is the number of types designated
* in the header, column 1 designales the data type, and column 2 gives the length of the data type in bytes.

1

' CALLed by: [not yet used]
SUB DecodeHeader (HS)

FORj=0TO 1
FOR k = j + 2 * j TO LEN(HS) - 2 STEP 4
Head1% = CVI(MIDS(HS, k, 1) + CHRS(0))
Head2% = CVI(CHRS(0) + MIDS(HS, k + 1, 1)) _
Header(j + 1, (k + 3 - 2 * j) / 4) = Head1% + Head2%
NEXT k
NEXT j

END SUB

37

Decode ROWS 1024 byte data record into its various variables. The data is contained in NewRecord$ which
is obtained from the subroutine ReadRecord.

’ ExbPreProcessing; ExbTapeLog; FileN

CALLed by: AsclIPitchRoll; CopyExbToDos; DosPreProcessing
OpenExistingFile; RecordN; StepBackwards
StepForwards; Waterfall

SUB DecodeRecord

' Header :bytes 1 w0 50 }
Dta.Header = MID$(NewRecord, 1, 50)

* Radar return : bytes 51 to 750
Dta.Radar = MID§(NewRecord, 51, 700)

* p-c. internal tick counter time : bytes 751 to 754
Dta.TickTime = PcTime$(CVL(MID$(NewRecord, 751, 4)))

* AD trigger : bytes 755 to 756
Dta. TriggerDelay = ADTriggerDelay&(MID$(NewRecord, 755, 2))

' p.c. realtime clock time : bytes 757 t0 758
Dta.TrueTime = PcClockTime$(MID$(NewRecord, 757, 3))

* External "black box" time used until August 1991
Dta.AccurateTime = AccurateTime$(MID$(NewRecord, 757, 5))

* aircraft roll from INS : bytes 762 1o 763
Dta.Roll = PitchRolll(MIDS(NewRecord, 762, 2))

' aircraft pitch from INS : bytes 764 to 765
Dua.Pitch = PitchRoll (MID§(NewRecord, 764, 2))

' antenna pointing angle : bytes 767 to 768
Dta.ShaftAngle = RotationAngle!(MID$(NewRecord, 767, 2))

END SUB

SUB DecodeRecord

SERBOBE0052800000 08080 BRRRRRCUCIORORIPREERSESR0L4REES4540040 2844 ERG SR04 CECRLBSLRORNRARANRNRENENRS

' CALLed by: FkSet

SUB DfoKy (Kt$) > Assign labels to the Function keys.
FORi=1TO 10
KEY i, MIDS(Kt$, 7* (i-1)+ 1, 7)
NEXT i
KEY ON

END SUB

38

SUB DfuKy

' Top menu for selecting preprocessing functions of a DOS file.

y

' CALLed by: FirstMenu
SUB DosFile
DIM KeyText$(10)
FileSource$ = "DOS"
Active = Dos
DO

KeyText$(1) = "MainMnu":

KeyText$(3) = "PreProc™
KeyTexi$(5) =" "
KeyTexi$(7) = " "
KeyText$(9) = "ClsFile™:
FkSet KeyText$Q

CLs

PresentFile

KeyText$(2) = "OpnFile"
KeyTexi$(4) = " "
KeyTexi$(6) = " "
KeyText$(8) = " "
KeyText$(10) = "Exit "

Message 17, "Select some sort of DOS activity"

FkCase$ = FKeyOnly$

SELECT CASE FkCase$

CASE "MainMnu" ’ Return to the main menu

Dos = Active
EXIT SUB

CASE "OpnFile”
OpenExistingFile
CASE " "
Blank

CASE™ "

IF FREEFILE > 1 THEN

Blank
ELSE

NoFile
END IF

CASE" "

IF FREEFILE > 1 THEN

Blank
ELSE

CopyDosToDos

END IF

CASE "PreProc”

SUB DosFile

39

IF FREEFILE > 1 THEN
DosPreProcessing
ELSE
NoFile
END IF
CASE "ClsFile"
ResetDosStats
Active = Dos

CASE "Exit "
END

END SELECT
Dos = Active
LOOP

END SUB

40

SUB DosFile (cont.)

* Primary menu for selecting preprocessing operations to perform on a DOS file.

' CALLed by: DosFile
SUB DosPreProcessing
DIM KeyText$(10)
Active = Dos
DO
KeyText$(1) = "DosMenu":
KeyText$(3) = "Rec #N ™
KeyText$(5) = "WuFall™:
KeyText$(7) = " "
KeyText§(9) = " "
FkSet KeyText$()
CLS

PresentFile

KeyText$(2) = " "
KeyText$(4) = " "
KeyText$(6) = "DspData”
KeyText$(8) = " "
KeyText$(10) = "Exit "

> put some screen text here to explain some of the FKs

Message 17, "Select some sort of ROWS preprocessing activity”

FkCase$ = FKeyOnly$
SELECT CASE FkCase$
CASE "DosMenu®
CASE " "
CASE "Rec #N "
RecordN

ReadRecord
DecodeRecord

Active.ByteLoc = ByteLoc

CASE "WuFall"
Waterfall

CASE "DspData"
PlotRadReturn

CASE "Exit "
END

END SELECT

Dos = Active

LOOP UNTIL FkCase$ = "DosMenu"

END SUB

SUB DosPreProcessing

41

SUB DriveReady
* Test if EXB-8200 is ready to accept a new command; wait uatil previous read or wrile operation is finished.

' CALLed by: ExbReset; ExSPACE; MERGE
’ WriteRecord
SUB DriveReady
DO
CALLS XREADY(IERR%)

LOOP WHILE IERR% <> 0

END SUB

OSSO0 S0PRERSRNSES0RS0040R80000PIPSBRBPFSRSRRRRIPISRAIEISSRSHE082402004005 4044000008020 8302200030000s

SUB EnterFileName
' CALLed by: OpenExisting File

SUB EaterFileName (FileName$, ValidNameS$)

FileName$ = ™"

ValidName$ = "Y"

ON ERROR GOTO BadFileName

LOCATE 18, 35

INPUT ; FileName$

FileName$ = UCASE$(FileName$)

IF LTRIMS$(FileName$) = "" THEN EXIT SUB
IF ERR <> 0 THEN FileName$ = "

OPEN FileName$ FOR BINARY AS #5

SELECT CASE FileSource$
CASE "DOS"

IF ERR <> 0 THEN

ResetDosStats

ValidName$ = "N”"
ELSE

ValidROWSFile ValidName$, 5!

IF ValidName$ = "N" THEN ResetDosStats
END IF

CASE "EXB"
IF ERR <> 0 THEN
ValidName$ = "N"
ELSE
ResetDosStats
END IF
END SELECT

ON ERROR GOTO 0
CLOSE #5

END SUB

42

SUB EnterRecord
* Keyboard entry of record number at which processing will begin.

' CALLed by: AscllPitchRoll; CopyExbTaDas; RecordN
SUB EnterRecord (S&)
DO
NewRec& = 0
LOCATE 18, 37
INPUT ; NewRec& _
LOOP WHILE NewRec& <=0
S& = NewRec&

END SUB
OBOESRISISB00 RS0S40 RS0 00BN ERARERRARREIRRE0E03008050205008000080800030038004008000040

SUB ExbFile
' CALLed by: FirstMenu

SUB ExbFile * Operate on an EXABY'TE tape file.

DIM KeyText$(10)

FileSource$ = "EXB"
Active = Exb

CALLS XSENSE(SenseStatus(0), IERR%)
IF (SenseStatus(2) AND 64) = 0 THEN
IF Active.TStart = " " THEN
* 'This condition only occurs if PREROWS is started from
’ the top and the tape in not at LBOT.

ExbReset (ReadDriveld%)
ResetExbStats
Active = Exb
END IF
END IF
DO
KeyTexi$(1) = "MainMnu™: KeyText$(2) = "PreProc”
KeyText$(3) = " " KeyText$(4) = " "
KeyText$(5) = "LogExb ™: KeyText$(6) = " g
KeyText$(7) = "Merge ": KeyText$(8) = " "
KeyText$(9) = "Initize": KeyText$(10) = "EXIT "

FkSet KeyText$()

CALLS XSENSE(SenseStatus(0), [ERR%)

IF (SenseStatus(2) AND 6) THEN
' This condition only occurs if the tape deck door has
’ been opened while this program is in or below this
* DO LOOP location.
ResetExbStats
Active = Exb

END IF

CLS
PresentFile

43

Message 17, "Select some sort of EXABYTE activity.”
FkCase$ = FKeyOnly$

SELECT CASE FkCase$
CASE "MainMmu" 'F1
EXIT SUB ' Return to first menu
CASE "PreProc”
ExbPreProcessing
CASE”" "
CASE "LogExb " "Produce a log of contiguous sequences
'of records on an ExaByte tape.
ExbTapeLog
CASE "Merge "
MERGE
CALLS SETTGT(ReadDriveld%, 0)
EXIT SUB ’Return to first menu
CASE "Initize"
ExbReset (ReadDriveld%)
ResetExbStats
Active = Exb
CASE "EXIT "
END
END SELECT
Exb = Active
LOOP

END SUB

44

SUB ExbFile (cont.)

> CALLed by: ExbFile
SUB ExbPreProcessing
DIM KeyText$(10)

DO

KeyText§(1) = "ExbMenu":

KeyText$(3) = "Rec #N ":
KeyText$(5) = "WuFall™:
KeyText$(7) = "PichRol™:
KeyText$(9) = * "

FkSet KeyText$()
CLS

Active = Exb
PresentFile

Message 17, "Select some sort of ROWS preprocessing activity

FkCase$ = FKeyOnly$
SELECT CASE FkCase$
CASE "ExbMenu"
EXIT SUB
CASE "File N "

FileN

KeyText$(2) = "File N "
KeyText$(4) = "CpyFile”
KeyText$(6) = "DspData”
KeyText§(8) = " "
KeyText$(10) = "Exit "

' F1

'F2

Active.FileName = RTRIM$("Exabyte file # ") + STRS$(Active.FileNo)

ReadRecord
DecodeRecord

Active.ByteLoc = ByteLoc

Active. TStart$ = ClockTime$

CASE "Rec #N "
RecordN
CASE "CpyFile”
CopyExbToDos
CASE "WurFall®
Waterfall
CASE "DspData"
PlotRadReturn
CASE "PichRol”
AsclIPitchRoll

CASE "’ "

' F4

*FS

' Fé

SUB ExbPreProcessing

45

SUB ExbPreProcessing (cont.)
CASE "Exit " ' F10

END
END SELECT

Exb = Active
Update
LOOP

END SUB

S0452088800803008008 0402348000884 RNS RN ARERERNEBIRARERABIBISERVIBIGINBAIRSEIBIECECREPEBEEBINIEREBENDS

SUB ExbReset
' CALLed by: ExbFile; MERGE

SUB ExbReset (1d%) ” Reset the EXABYTE tape deck.
CONST RecSize% = 1024
CLS
Message 17, "RESETTING DRIVE"
CALLS SETTGT(1d%, 0)
CALLS XSMODE(0, RecSize%®, 0, 0,0, 0,0, §, 5, 0, IERR%)
CALLS XRESETIERR)
DriveReady
END SUB

46

* SenseStatus(2) error code definitions for EXABYTE drive.
' CALLed by: PlotRadReturn
SUB ExbStatus (Sense$, SenseCode%)

DIM Sense2(0 TO 15) AS STRING
DIM Sense3 AS LONG

DIM Sense19(0 TO 7) AS STRING
DIM Sense20(0 TO 7) AS STRING
DIM Sense21(0 TO 3) AS STRING

Sense2$(0) = "No sense data™: Sense2$(1) = "Not used”

Sense2$(2) = "Not ready”: Sense2$(3) = "Medium error”
Sense2§(4) = "Hardware error™: Sense2$(5) = "llegal request”
Sense2$(6) = "Unit attention": Sense2$(7) = "Data protect”
Sense2$(8) = "Check for blank tape™: Sense2$(9) = " v

Sense2$(10) = "Aborted™: Sense2$(11) = "Aborted command”
Sense2§(12) = "Not used™: Sense2§(13) = "Volume overflow”
Sense2$(14) = "Not used™: Sense2$(15) = "Not used”
Sense195(0) = "Beginning of tape”: Sense19$(1) = "Tape not present”
Sense198(2) = "Tape motion error™ Sease19$(3) = "Error counter overflow"
Sense19$(4) = "Media error™: Sense19$(5) = "ExaByte buffer error”

Sense198(6) = "SCSI bus parity error”
Sense198(7) = "Reset since last status”

Sense208(0) = "Formatter error™: Sense20$(1) = "Servo system error”
Sense208(2) = "Media error™: Sense208(3) = "Under run error”
Sense208(4) = "Error during filemark write"

Sense208(5) = "Tape is write protected”

Sense208(6) = "Tape mark error detected”

Sense208(7) = "Transfer abort error”

Sense21$(0) = "Write splice error, overshoot”

Sense21$(1) = "Write splice error, no gap track"

Sense21$(2) = "Physical end of tape”

CALLS XSENSE(SenseStatus(0), IERR%)

IF (SenseStatus(0) AND 128) THEN

IF (SenseStatus(2) AND 1) THEN

ELSEIF (SenseStatus(2) AND 2) THEN

ELSEIF (SenseStatus(2) AND 4) THEN

ELSEIF (SenseStatus(2) AND 8) THEN

ELSEIF (SenseStatus(2) AND 16) THEN

SUB ExhStatus

47

48

ELSEIF (SenseStatus(2) AND 32) THEN

ELSEIF (SenseStatus(2) AND 64) THEN

ELSEIF (SenseStatus(2) AND 128) THEN

END IF

IF SenseStatus(19) AND NOT 0 THEN

IF (SenseStatus(19) AND 1) THEN

ELSEIF (SenseStatus(19) AND 2) THEN

ELSETF (SenseStatus(19) AND 4) THEN

ELSEIF (SenseStatus(19) AND 8) THEN

ELSEIF (SenseStatus(19) AND 16) THEN

ELSEIF (SenseStatus(19) AND 32) THEN

ELSEIF (SenseStatus(19) AND 64) THEN

ELSEIF (SenseStatus(19) AND 128) THEN

END IF

END IF

IF (SenseStatus(20) AND NOT 0) THEN

IF (SenseStatus(20) AND 1) THEN

ELSEIF (SeaseStatus(20) AND 2) THEN

SUB ExbStatus (cont.)

SUB ExbStatus (cont.)
ELSEIF (SenseStatus(20) AND 4) THEN

ELSEIF (SenseStatus(20) AND 8) THEN

ELSEIF (SenseStatus(20) AND 16) THEN

ELSEIF (SenseStatus(20) AND 32) THEN

ELSEIF (SenseStatus(20) AND 64) THEN

ELSEIF (SenseStatus(20) AND 128) THEN

END IF
END IF
IF (SenscStatus(21) AND NOT 0) THEN

IF (SenseStatus(21) AND 1) THEN

ELSEIF (SenseStatus(21) AND 2) THEN

ELSEIF (SenseStatus(21) AND 4) THEN

END IF
END IF
ELSE
Message 17, "ExaByte sense data invalid for last Call to ExaByte"
END IF

END SUB

49

SUB ExbTapeLog

> Produce a log of an EXABYTE tape. The log will indicate all time gaps within each tape file, the total number
’ of records in each file, and the starting and stopping time of each file.

’ CALLed by: ExbFile
SUB ExbTapeLog

DIM NewName AS STRING * 1

DIM BeginRecordTime AS STRING * 11, EndingRecordTime AS STRING * 11
DIM BeginRecordNumber AS LONG

DIM TimeTicks(0 TO 1) AS LONG

CONST Recordlacrement% = 100

CONST RecordsPerSec = 100

CONST RecsPerTick% = RecordsPerSec / TicksPerSec

CONST TestTime = (1! * Recordlncrement% / RecsPerTick%) + RecsPerTick%

NewName$ = "N"

DO
CLOSE #3
Message 17, "Enter the NAME of the DOS file for the log output.”
LOCATE 18, 35
INPUT ; FileLog$
IF FileLog$ = "" THEN EXIT SUB
OPEN FileLog$ FOR APPEND AS #3

IF LOF(3) > 0 THEN
Message 17, "WARNING, A FILE OF THE SAME NAME ALREADY EXISTS."
Message 18, "Do you want to use a different filename? (Y/N)"
LOCATE 19, 35
NewName$ = UCASES(INPUTS(1))
END IF

LOOP WHILE NewName$ = "Y"

Rewind

CLS

Ps1$ = "\ vV ! *Print using format string for disk output.
Ps2$ = MM T "Print using format string for screen output.

Headerl$ = "Start Time Stop Time Start Stop Number”
Header2$ = ™ pe tick pctick Rec# Rec# Recs"

DO * Loop on EOF until EOD

NonRecords% = 0

Active.Record = 1
Active.ByteLoc = 1
BeginRecordNumber& = 1
ReadRecord

DecodeRecord

BeginRecordTime = ClockTime$
Active. TStart = BeginRecordTime

PRINT #3,

PRINT #3, SPACES(20) + "FILE NUMBER: "; Active.FileNo: PRINT
PRINT SPACES$(30) + "FILE NUMBER: "; Active.FileNo: PRINT

50

PRINT #3, Header1$: PRINT #3, Header2$

PRINT SPACES$(10) + Header1$: PRINT SPACES$(10) + Header2$
SaveLine = CSRLIN

SaveCol = POS(0)

DO

’ Loop on file until EOF

RecordsMoved% = RecordIncrement%® - 1

DO

' Check for time gap within record increment

TimeTicks&(0) = CVL(MID$(NewRecord, 751, 4))

CALLS XSPACE(RecordsMoved%, IERR%)
CALLS XSENSE(SenseStatus(0), IERR%)
Active.Record = Active.Record + RecordsMoved%

AtEOF% = SenseStatus(2) AND 128
AtEOM% = SenseStatus(2) AND 64
AtEOD% = SenscStatus(2) AND 8

IF AtEOF% OR AIEOM% OR AtEOD% THEN * EOF test.

Active.Record = Active.Record - SenseStatus(6)
EXIT DO
END IF

ReadRecord
DecodeRecord

COLOR 7, 0: LOCATE 24, 15

PRINT "PRESENT RECORD #: *;
COLOR 4, 7: PRINT Active.Record - 1;
COLOR 7, 0: PRINT " TIME: %
COLOR 4, 7: PRINT " " + ClockTimeS$;
COLOR 7,0

TimeTicks&(1) = CVL(MID§(NewRecord, 751, 4))
DeltaT& = TimeTicks&(1) - TimeTicks&(0)

LOOP WHILE (DeltaT& < TestTime)

EndingRecordTime = PcTime$(TimeTicks&(0))

ContinuousRecords = Active.Record - BeginRecordNumber& - RecordsMoved%

PRINT #3, USING Ps1$; BeginRecordTime$; EndingRecordTime$;

SUB ExbTapeLog (cont.)

PRINT #3, USING "#####H °; BeginRecordNumber&; Active.Record - RecordsMoved% - 1; ContinuousRecords

LOCATE Saveline, SaveCol

PRINT SPACES(10);

PRINT USING Ps1$; BeginRecordTime$; EndingRecordTimeS$;
PRINT USING Ps2$; BeginRecordNumber&; Active.Record - RecordsMoved% - 1; ContinuousRecords

BeginRecordTime$ = PcTime$(TimeTicks&(1))
BeginRecordNumber& = Active.Record - 1

IF (AtEOF% + AtEOM% + AtEOD%) > 0 THEN EXIT DO

LOOP

Active.TEnd = PcTime$(TimeTicks&(1))

PRINT #3, SPACES(10); "End of file.”

'ClockTime$

51

SUB ExbTapeLog (cont.)
PRINT #3, "Start Time: "; Active.TStart; " Stop time: "; Active.TEnd
PRINT #3, "Total Records:”; Active.Record

PRINT SPACES(10); "End of file.”
PRINT "Start Time: "; Active.TStart; " Stop time: "; Active.TEnd
PRINT "Total Records:"; Active.Record

CALLS XSPACE(1, [ERR%)
Active.FileNo = Active.FileNo + 1

LOOP WHILE (IERR% AND 8!) =0 ’ .
PRINT #3, "END OF DATA."

CLOSE #3

Active.FileNo = Active.FileNo - 1

Active FileName = RTRIMS$("Exabyte file # ") + STR$(Active.FileNo)

Active.ByteLoc = ByteLoc

Active. TEnd = ClockTime$

Active.TotalRecords = Active.Record

PRINT : PRINT "PRESS ANY KEY TO CONTINUE": Wait$ = INPUT$(1)

END SUB

52

> CALLed by: ExbPreProcessing
SUB FileN

DO

CLs

PresentFile

Message 17, "Enter the number of the file you want to process.”

LOCATE 18, 35

INPUT ; NewFileNo%

IF NewFileNo% = 0 THEN EXIT SUB .
LOOP WHILE NewFileNo% < 0

SkipFile% = NewFileNo% - Active.FileNo

SELECT CASE NewFileNo%
CASE IS = Active.FileNo

CASE IS > Active.FileNo
DO WHILE SkipFile% > 0

ReadRecord * Create sense data to test for EOD

IF IERR% AND 8 THEN * If EOD.
Text$ = "EOD reached; tape set to beginning of last file.”
Message 15, Text$
CALLS XSKIPF(-2, IERR%)

CALLS XSKIPF(1, IERR%)
EXIT DO

ELSEIF (IERR% AND 128) <> 0 THEN
CALLS XSKIPF(-1, IERR%)

ELSE
TF Active.FileNo = 0 THEN SkipFile% = NewFileNo% - 1
CALLS XSKIPF(1, IERR%)

END IF

SkipFile% = SkipFile% - 1!
LOOP
CASE IS < Active.FileNo

IF NewFileNo% = 1 THEN
CALLS XREWNIXIERR%)

ELSE
CALLS XSKIPF(SkipFile% - 1, IERR%)
CALLS XSKIPF(1, IERR%)

END IF

SkipFile% = 0
END SELECT
ResetExbStats
Active = Exb
DecodeRecord
Active.TStart = ClockTime$
Active.FileNo = NewFileNo% - SkipFile%

END SUB

SUB FileN

53

' CALLed by: OpenExistingFile

SUB FileOpen (Close1$)

Closel$ = "Y"
IF FREEFILE <> 1 THEN

CLS
Message 17, RTRIMS(Active.FileName) + " is presently open®
Message 19, "Do you want to open a different file (Y/N)?"

DO
Close1$ = UCASES(INPUTS(1))
LOOP WHILE Close1$ <> "Y" AND Close1$ <> "N"

IF Closel$ = "Y" THEN
ResetDosStats
Active = Dos

END IF

ENDIF

END SUB

54

SUB FileOpen

SUB FirstMenu

* CALLed by: MAIN

SUB FirstMenu ' ##¢¢ Initial program menu.
DIM KeyText$(10)
DO

KeyText$(1) = " "

KeyText$(3) = "EXBFILE":

KeyText$(5) =" "
KeyText§(7) = " "

KeyText$(9) = "VERSION™:

FkSet KeyText$()
FkCase$ = **
FileSource$ =" "
ResetActiveStats
ResetDta

CLS
PresentFile

LOCATE 14, 18

KeyText$(2) = "DOSFILE”
KeyText$(4) = " "
KeyText$(6) = " ’
KeyTexi$(8) = " ’
KeyText§(10) = "EXIT "

PRINT "This program is used to perform preprocessing and"

LOCATE 15, 18

PRINT "low level processing on ROWS data files."

LOCATE 20, 20

PRINT "PRESS THE FUNCTION KEY INDICATING THE SOURCE"

LOCATE 21, 20

PRINT "OF THE ROWS DATA FILE YOU WANT TO PROCESS."

FkCase$ = FKeyOnly$
SELECT CASE FkCase$
CASE "DOSFILE"
DosFile
CASE "EXBFILE"
ExbFile
CASE "VERSION"
Version
CASE "EXIT "
END
END SELECT

LOOP

END SUB

' F10

55

FUNCTION FKeyOnly$

' CALLed by: DosFile; DosPreProcessing; ExbFile

! ExbPreProcessing; FirstMenu

FUNCTION FKeyOnly$

DO
B = “n
Char$ = ™"
DO .
Char$ = INKEY$

LOOP UNTIL Char$§ <> ™
DO UNTIL LEN(Chas$) = 0
k$ = k$ + Char§
Char$ = INKEYS
LOOP
k$ = k$ + Char§
IF LEN(kS) <> 7 THEN BEEP
LOOP UNTIL LEN(k$) = 7
FKeyOnly$ = k$

END FUNCTION

EREBE RN HCSBE 000000000 RARARARERORRA RSB SRRRAEISISRINNRERS R0 40004000 2000000088008 005580R0000000

SUB FkSet
' CALLed by: DasFile; DosPreProcessing; ExbFile;
ExbPreProcessing; FirstMenu

SUB FkSet (Keys$()

KtS = "™

FORi=1TO 10

Ki$ = Kt$ + Keys$(i)

NEXT

DfaKy Ki$
END SUB

56

SUB GPSDisplay
' CALLed by: ParameterDisplay

SUB GPSDisplay (LatLong$)

RowOffSet% = 18
ColOffSet% = 45

COLOR 3

LOCATE RowOffSet%, ColOffSet% - 1

PRINT CHR$(201); STRINGS(25, CHRS$(205)); CHRS$(187)

FORi=0TO 4 -
‘LOCATE RowOffSet%® + i + 1, ColOffSet% - 1: PRINT CHR$(186)
LOCATE RowOffSet% + i + 1, ColOffSet% + 25: PRINT CHRS$(186)

NEXT

LOCATE RowOffSet% + 6, ColOffSe1% - 1

PRINT CHR$(200); STRINGS(25, CHR$(205)); CHRS(188)

COLOR 7: LOCATE RowOffSet% + 1, ColOffSet% + 4

PRINT "GPS location at"; .

LOCATE RowOffSet% + 2, ColOffSet% + 8

PRINT ClockTime$

COLOR 4: LOCATE RowOffSet% + 1, ColOffSet% + 7

LOCATE RowOffSet + 4, ColOffSet% + 3
COLOR 10

PRINT "LATITUDE : ™

LOCATE RowOffSet + 5, ColOffSet% + 3
PRINT "LONGITUDE : *;

PresentLat# = CVL(MIDS(LatLong$, 1, 4)) / 10000
PresentLong# = CVI(MIDS$(LatLong$, 5, 4)) / 10000

IF PresentLong# <> -99999.9999# THEN
LOCATE RowOffSet + 5, ColOffSet% + 15
PRINT USING "+##.####"; PresentLong#

END IF

IF PresentLat# <> -99999.9999% THEN
LOCATE RowOfiSet + 4, ColOffSet% + 15
PRINT USING "+##.#ii##"; PresentLat¥

END IF

COLOR 15

END SUB

57

'

FUNCTION GPSLatLong$
Strips latitude and longitude from GPS records, converts them to long integer string variables.

* CALLed by: MergeGPS

FUNCTION GPSLatLong$ (LatLong$)

Start% = 1
LatPos® = 1
DO UNTIL Start% = 3 ' Skip first two comma delimited fields.
LatPos% = INSTR(LatPos%, LatLong$, ",") + 1
Start% = Stant% + 1 B
LOOP

Law# = VAL(MIDS(LatLong$, LatPos%, 2)) + (VAL(MIDS(LatLong$, LatPos% + 2, 7))) / 60

Log# = -1 * (VAL(MIDS(LatLong$, LatPos% + 12, 3)) + (VAL(MIDS$(LatLong$, LatPos% + 15, 7)) / 601)
Lat& =Lat# * 10 * 4

Log& = Lagh * 10 % 4

GPSLatLong$ = MKLS(Lat&) + MKL$(Lag&)

END FUNCTION

58

SUB Hep2
' CALLed by: PlotRadReturn

SUB Help2

LOCATE 27, 1: COLOR 12
PRINT "[ALT-F] Continuous forward. [F] forward 1 record.”; *"
IF FileSource$ = "DOS" THEN
LOCATE 28, 1
PRINT "[ALT-B] Continuous backward. [B] backward 1 record.”
END IF
PRINT "ESC - exit.” ~
COLOR 15

END SUB

C2UOURISEESSSSSENIPIENIBESINPIPIEEFRNR BSOS EBENEL RN A NSRRI REESEESSRARININIIRRININIRNIRIIROIRENNINNRESES

SUB IDLE
' CALLed by: CheckExbStatus; MERGE; Version

SUB IDLE
Message 22, "SYSTEM SLEEPING.”
Message 23, "HIT ANY KEY TO CONTINUE."
DO: k$ = INKEYS: LOOP WHILE k$ <> "*
DO: k$ = INKEYS: LOOP WHILE k$ ="
END SUB

BABEBEEVEGEGBERORIEPRORESISRNIRUREOEOSIRPPPICCININENRROERPRSSRSNSIBIURENISIBIERRIENESSSINNBONSRINOIRSNRIGSER

SUB IFGains

> Reads the IF gains and corresponding times of gain changes and converts them into long
' integers in a two dimensional array.

* CALLED by: INFOFILE
SUB IFGains (FileNo%, TTo&, GT&()
DIM IfGain(100) AS STRING

NumberGains% = 0
DO * Read gain table. 100 gain changes max.
NumberGains% = NumberGains% + 1
LINE INPUT #FileNo%, IfGain(NumberGains%)
IF NumberGains% > 100 THEN
CLS
PRINT "Too many IF gain changes, input truncated.”
EXIT DO
END IF
LOOP UNTIL EOF(FileNo%)

* Convert gain string to integer gain and time of gain change.
FOR j = 1 TO NumberGains%
Gain$ = LTRIMS(MIDS(1tGain(j), 10))
TimeGain$ = RTRIMS(LTRIMS(MIDS$(IfGain(j), 1, 9)))
GT&(j, 1) = VAL(LEFT$(Gain$, INSTR(Gain$, " *) - 1))
* Strip time from Gain$ and convert to integer seconds since midaight of airplane takeoff.
GT&(j, 2) = IntegerTIME&(TimeGain$)
IF GT&(j, 2) < TTo& THEN GT&(j, 2) = GT&(j, 2) + 86400
NEXT

END SUB

59

' Read the information file from disk and reformat the data.
' CALLed by: MERGE
SUB INFOFILE (MN$, MD$, MT&, GainTime&(), IFN$, GFNS, ITL!)

DO
ON ERROR GOTO BadFileName
MergelnfoFile$ = ™"
Valid$ = "Y"

LOCATE 18, 1: PRINT BlankLine$
Message 15, "Enter the NAME of the MERGE information file"
LOCATE 18, 35
INPUT ; MergelnfoFile$
MergelnfoFile$ = UCASES$(MergelnfoFile$)
IF LTRIM$(MergelnfoFile§) = " THEN
MNS$ = "": MD§ = *": MT& = 0: IFN§ = *: GFN§ = "": ITL! = 0
EXIT SUB
END IF
FileNo% = 2 + FREEFILE
OPEN MergelnfoFile$ FOR INPUT AS #FileNo%
IF ERR <> 0 THEN
MergelnfoFile§ = ™"
Valid$ = "N*
END IF

LOOP WHILE Valid$ = "N*

ON ERROR GOTO 0

LINE INPUT #FileNo%, MN$ * Mission name

LINE INPUT #FileNo%, MD$ ' Mission date

LINE INPUT #FileNo%, MTS * Mission takeoff time (UTC)
LINE INPUT #FileNo%, IFN$ * INS data file name

LINE INPUT #FileNo%, GFNS$ * GPS data file name

LINE INPUT #FileNo%, ITLS * INS time lag wrt ROWS data

' Coanvert mission starting time {rom string to long integer.

MT& = Integes TIME&(RTRIMS(LTRIMS(MIDS(MTS, 1, 10))))
* Read IF gain table; save in 2-D amray with first column
* containing the gains and the second column the times.

CALL IFGains(FileNo%, MT&, GainTime&())

CLOSE #FileNo%

IFNS = MIDS(IFNS, 1, INSTR(IFNS, ") - 1)

GFNS$ = MID$(GFNS, 1, INSTR(GFNS, " ") - 1)

ITL! = VAL(ITLS)

END SUB

60

SUB INFOFILE

FUNCTION Integer TIME&
" CALLed by: IFGains; INFOFILE; MERGE

FUNCTION IntegerTIME& (TS)

Hr& = VAL(LTRIM$(MIDS(TS, 1, INSTR(TS, ™:") - 1)))
Min& = VAL(MIDS(TS, INSTR(TS, ":") + 1, 2))
Sec& = 0
L% = LEN(TS)
IF L% > 6 THEN
Sec& = VAL(MIDS(TS, L% - 1))
END IF)

IntegerTIME& = 3600 * Hr& + 60 * Min& + Sec&

END FUNCTION
IV NRSOSRSENOROEESSENABIROINININOOSNEROREESRPIOINSERIRINRIREPIGO00000CINIRSESEIEIRUNESEENRISSISidEdide
: FUNCTION KeyCode%
* General keyboard scan code interpreter. For ALT keys add 1000.
' CALLed by: PlotRadReturn; Waterfall
FUNCTION KeyCode% (k$) ' [11/781]

IF LEN(KS) = 1 THEN
KeyCode% = ASC(UCASES(kS))
ELSEIF LEN(LS) = 2 THEN
KeyCode% = ASC(RIGHTS(KS, 1)) + 1000
END IF
END FUNCTION

SUSENSAPAREAFANEESARESRO BRI E00QICISERESANIUBORESECICREESEOCOES OISR ORORICIRIRRIRRBRIRISOIEPRINRNEIROIRGIRERSIS

SUB Keystroke
' CALLed by: StepBackwards

SUB Keystroke (C%)
k$ = INKEYS

IF LEN(kS) = 1 THEN
C2% = ASC(UCASES(k$))
IF C2% = 70 OR C2% = 66 OR C2% = 27 THEN
C% = C2%
END IF
ELSEIF LEN(k$) = 2 THEN * ALT keystroke
C2% = ASC(RIGHTS(KS, 1))
IF C2% = 48 OR C2% = 33 THEN
C% = C2%
END IF
END IF

END SUB

61

' Set the color ié\:eils t;or the waterfall display.
' CALLed by: ColorLevels
SUB Levels (LevelChoice%)
SELECT CASE LevelChoice%
CASE 1!
Level%(0) = 8: Level%(1) = 14: Level®(2) = 16: Level%(3) = 18
Level%(4) = 21: Level%(5) = 24: Level %(6) = 26: Level%(7) = 29
Level %(8) = 32: Level%(9) = 37: Level %(10) = 42: Level%(11) = 48
Level%(12) = 56: Levet%(13) = 63: Level%(14) = 70
CASE 2!
Level%(0) = 9: Level%(1) = 11: Level®%(2) = 13: Level%(3) = 15
Level%(4) = 17: Level%(5) = 19: Level%(6) = 21: Level%(7) = 23
Level%(8) = 25: Level%(9) = 27: Level%(10) = 29: Level%(11) = 31
Level%(12) = 33: Level%(13) = 35: Level%(14) = 50
CASE 3!
Level9%(0) = 10: Level%(1) = 11: Level%(2) = 12: Level%(3) = 13
Level%(4) = 14: Level %(5) = 15: Level %(6) = 16: Level%(7) = 17
Level%(8) = 18: Level%(9) = 20: Level%(10) = 22: Level%(11) = 24
Level%(12) = 26: Level%(13) = 40: Level%(14) = 60
CASE 4!
Level%(0) = 10: Level%(1) = 14: Level%(2) = 16: Level%(3) = 18
Level%(4) = 20: Level %(5) = 22: Level %(6) = 24: Level%(7) = 26
Level%(8) = 28: Level %(9) = 30: Level%(10) = 33: Level%(11) = 35
Level %(12) = 45: Level%(13) = 55: Level%(14) = 80
CASE 5!
Level %(0) = 15: Level%(1) = 30: Level %(2) = 50: Level%(3) = 60
Level%(4) = 70: Level %(5) = 80: Level%(6) = 85: Level%(7) = 90
Level%(8) = 95: Level%(9) = 100: Level%(10) = 110: Level%(11) = 120
Level%(12) = 130: Level%(13) = 140: Level%(14) = 220
CASE 6!
Level%(0) = 10: Level%(1) = 12: Level%(2) = 14: Level%(3) = 16
Level%(4) = 18: Level%(5) = 20: Level %(6) = 23: Level%(7) = 27
Level%(8) = 30: Level9%(9) = 35: Level%(10) = 40: Level%(11) = 45
Level%(12) = 50: Level%(13) = 60: Level%(14) = 75
END SELECT

END SUB

62

SUB Levels

SUB MERGE
* Merge GPS, INS, and IF gain change data located in pe files with an EXABYTE ROWS file and save the merged
* file on a second EXABYTE. Certain errors in the raw data relating to the pc real-time clock and the antenna
' shaft angle encoder are adjusted.

: CALLed by; ExbFile
SUB MERGE
DIM GainTime(100, 2) AS LONG
StartTime = TIMER :

INFOFILE MissionName$, MissionDate$, MissionTime&, GainTime&(), InsFileName$, GpsFileName$, InsTimeLag!

IF InsFileName$ <> "" THEN

InsFile% = FREEFILE

OPEN InsFileName$ FOR BINARY AS #InsFile

InsData$ = INPUTS(44, #InsFile%) :

InsTime& = CVL(MID$(InsData$, 1, 4)) / TicksPerSec + VAL(InsTimeLag$)
ELSE

InsTime& = -1
END IF

IF GpsFileName$ <> " THEN
GpsFile% = FREEFILE
OPEN GpsFileName$ FOR INPUT AS #GpsFile%®
LINE INPUT #GpsFile%, GpsData$
GpsTime& = TimeGPS&(GpsData$)
ELSE
GpsTime& = -1
END IF

CALL STARTINGTIME(StartTime&, MissionTime&, InsTime&, GpsTime&)

IF InsFileName$ <> "™ THEN SEEK #InsFile%, 1
IF GpsFileName$ <> "" THEN SEEK #GpsFile%, 1

"Construct the new header for the merge file.
MergeHeader$ = NewHEADERS

'Construct string for mission name and date information.
NewNameDate$ = NameDATES(MissionName$, MissionDate$)

FileSource$ = "EXB"
ExbReset (WriteDriveld%)
CALLS SETTGT(ReadDriveld%, 0)

CLS
PresentFile
RowsTime2& =0

* Step through ROWS file until start of first full second.
DO

RowsTimel& = RowsTime2&
ReadRecord
RowsTime$ = PcClockTime$S(MID$(NewRecord, 757, 3))
IF RowsTime$ = "FF:FF.FF" THEN

RowsTime$ = RowsTime3$

MIDS$(NewRecord, 757, 3) = RowsTime$

63

64

SUB MERGE (cont.)
END IF
RowsTime3$ = RowsTime$
RowsTime2& = IntegerTIME&(RowsTime§)

' Assume mission starting time is always entered as
* earlier than the time of the first radar waveform.
IF RowsTime2& < StartTime& THEN RowsTime2& = RowsTime2& + 86400
LOOP UNTIL RowsTime2& = RowsTimel& + 1

Dt% =0
RowsT2# = RowsTime2& B

InsTime# = InsTime&

Gain% =1 * Gain array index
END§ =" "

RecordsMerged& =0

* Primary loop to merge successive ROWS records with the ancillary data.
DO

MergeINS NewRecord, MergeHeader$, StartTime&, RowsT2#, InsTime#, InsFile%, InsTimeLag$
MergeGPS NewRecord, StanTime&, RowsTimel&, RowsTime2&, GpsTime&k, GpsFile%®

' Merge IF gain with ROWS record.
DO WHILE GainTime&(Gain% + 1, 2) <> 0 AND RowsTime2& >= GainTime&(Gain% + 1, 2)
Gain% = Gain% + 1
LOOP
MID$(NewRecord, 766, 1) = MKI$(GainTime&(Gain%, 1))

* Put mission name and date in ROWS record.
MID$(NewRecord, 1007, 18) = NewNameDate$

' Put new modified header in ROWS record.
MID$(NewRecord, 1, 50) = MergeHeader$

* Correct the antenna shaft angle and put corrected value in the ROWS record.
MID$(NewRecord, 767, 2) = ShaftAngle$

' Write the merged record to the target tape.
CALLS SETTGT(WriteDriveld%, 0)
DriveReady
WriteRecord "EXB", -1
RecordsMerged& = RecordsMerged& + 1
LOCATE 15, 30
PRINT "RECORDS MERGED: *; RecordsMerged&

" If previous record had no INS data (header ID was -9999) then reset INS header ID bytes to 1011.
IF MID$(MergeHeader$, 45, 2) = NoData$§ THEN
MID${MergeHeader$, 45, 2) = MKI$§(1011)
END IF

RowsTimel& = RowsTime2&

* Read next record from the source tape.
CALLS SETTGT(ReadDriveld%, 0)
DriveReady
ReadRecord
CALLS XSENSE(SenseStatus%(0), IERR%)

IF SenseStatus(2) = 0 THEN

SSUB MERGE (cont.)
RowsTime$ = PcClockTime$(MID$(NewRecord, 757, 3))

IF RowsTime$ = "FF.FF:FF" THEN
RowsTime$ = RowsTime3$
MID$(NewRecord, 757, 3) = RowsTime$

END IF

RowsTime3$ = RowsTime$

RowsTime2& = IntegerTIME&(RowsTimeS$)
IF RowsTime2& < StartTime& THEN RowsTime2& = RowsTime2& + 86400

SELECT CASE RowsTime2& - RowsTimel&
CASEIS=0
RowsT2# = RowsTime2& + D1% / 100 * Assumes 100 pulses/sec
D% =Dt% + 1
CASEIS=1
RowsT2# = RowsTime2&
Di% =1
END SELECT

ELSEIF (SenseStatus(2) AND 128) OR (SenseStatus(2) AND 8) THEN

* EOF or "blank” bytes encountered during last read.

LOCATE 11, 22

PRINT "Writing last record.”
CALLS SETTGT(WriteDriveld%, 0)
WriteRecord "EXB”, -1

LOCATE 19, 30

PRINT "Writing EOF to tape.”
CALLS XEOF(IERR%)

LOCATE 20, 31

PRINT "END OF TAPE COPY."
END$ = "END"

ELSE ' Some type of error has occured.

LOCATE 12, 25
PRINT "SYSTEM ERROR: "; SenseStatus(2); " HAS OCCURED."
ENDS$ = "END"

END IF

LOOP WHILE END§ <> "END"

Et = TIMER - StartTime
Hr = FIX(Et / 3600")
Min = FIX((E! - 3600! * FIX(Et / 3600?)) / 60!)

LOCATE 17, 25

PRINT "Tape copy time is ™;

PRINT USING "##_:"; Hr; Min;

PRINT USING "##"; FIX(Et - 3600! * Hr - 60! * Min)

CLOSE

IDLE

END SUB

65

SUB MergeGPS
* Merge GPS data on DOS disk file with ROWS data in an EXABY'IE file.

* CALLed by: MERGE

SUB MergeGPS (MRS, ST&, RTi&, RT2&, GpsTime&, GpsFile%)

' Read GPS data and synchronize time with ROWS
DO WHILE GpsTime& < RT2&
IF EOF(GpsFile%) THEN EXIT DO
LINE INPUT #GpsFile%, GpsData$
GpsTime& = TimeGPS&(GpsData$) B
IF GpsTime& < ST& THEN GpsTime& = GpsTime& + 86400
LOOP

* Put GPS latitude and longitude data into ROWS record.
MIDS$(MRS, 771, 8) = NoDataLong$ + NoDataLong$
IF GpsTime& = (RT2& - RTi&) * RT2& THEN
MID$(MRS, 771, 8) = GPSLatLong(GpsData$) -
END IF

END SUB

SPSSEFBSEFBSESEED RS E B P2 BB FSUPEREN R0 RBR AR SEP 0000 RSB SRSRABEDIRTEBEBIPEIRSPOPRBES000230800000000
SUB MergeINS

> Merge 44 bytes of "INS" data with a ROWS record. If the time difference between the INS data and the ROWS
> data is greater than two pc "ticks" then a "NO DATA" (-9999) is entered in the ROWS record.

' CALLed by: MERGE
SUB MergeINS (MRS, MHS, ST&, RT2#, InsTime#, InsFile%, InTLS)

STATIC InsData AS STRING

’ Read INS data and synchronize time with ROWS time.

DO WHILE (InsTime# < RT2# - 2 / TicksPerSec)
IF EOF(InsFile%) THEN EXIT DO
InsData$ = INPUTS(44, #InsFile%)
Ticks = CVL(MIDS(InsData$, 1, 4))
InsTime# = Ticks / TicksPerSec + VAL(InTLS)

* Past midnight?
IF InsTime# < ST& THEN losTime# = InsTime# + 86400!
LOOP

* Put INS data io present ROWS record.
MID$(MRS, 779, 44) = InsData$
IF ABS(InsTime# - RT2#) > 2 / TicksPerSec THEN
MID$(MHS, 45, 4) = NoData$ + MKIS(80)
MIDS$(MRS, 779, 80) = STRINGS$(80, 0)
END IF

END SUB

66

+

Print a message to the screen.

' CALLed by: ASclIPitchRdll;

CopyExbToDos;

ExbFile;
ExbStatus
FideOpen;
NaFile;
RecordN;
Version;

'

SUB Message (Row%®, Note$)

LOCATE Row%, 1
PRINT BlankLine$

LOCATE Row%, 42 - LEN(Notc$) / 2

COLOR 4, 7
PRINT Note$;
COLOR 7,0

END SUB

Blank;

DosFie;
ExbPreProcessing;
ExbTapel.og;
IDLE;
OpenExistingFile;
Rewind;

Waterfall

SUB Message

ColorSelection;
DosPreProcessing;
ExbReset

FileN
INFOFILE;
OpenNewFile;
ValidROWSFile;

GIGCEPS BIPRS00 ERROIRBISEBEBREOARREIIEPERNRERRIEAPIDORRIROEESERSENIRNINLASACROIRIRRINORNNNRENEGINS

' CALLed by: Starting Time

SUB MINMAX (A&(), N, Amin&, Imin, Amaxé&, Imax)

REDIM A(N)
Amax& = A%&(1): Imax = 1: Amin& = A&(1): Imin = 1
i=1
DO
i=i+l
IF A&(i) > A&(i - 1) THEN
Amax& = A&(i)
Imax = i
ELSE
Amin& = A& (i)
Imin = §
END IF

LOOP UNTILi = N

END SUB

SUB MINMAX

Find the minimum and maximum clements and element indicies of a one dimensional array of size N.

67

FUNCTION NameDATES
* .Insert mission name and date in merged file.

' CALLed by: MERGE
FUNCTION NameDATES (NS, D$)

AS = SPACES(10)
BS = SPACES(8)

* Insert the mission name (10 character field)
MIDS(AS, 1, 10) = RTRIMS(MIDS(NS, 1))

* Insert the mission date as --\--\--.

BS = RTRIM$(MID$(DS, 1, 8))
MIDS(BS, 1, 8) = "00\0" + RIGHTS(BS, 4)

IF LEN(BS) = 8 THEN
MIDS(BS, 1, 8) = BS
ELSEIF LEN(BS) = 6 THEN
MID$(BS, 1, 1) = MIDS(BS, 1, 1)
MIDS(BS, 1, 1) = MID$(BS, 3, 1)
ELSEIF LEN(BS) = 7 THEN
MIDS(BS, 1 - INSTR(BS, "\"), 3) = MID$(BS, 1, 3)
ELSE
MIDS(BS, 1, 8) = "-9999999" 'No mission date
END IF

NameDATES = AS + D§

END FUNCTION

68

* Create a header for the merged records. Header types and lengths are those used during the ERS-1
' underflight mission to Newfoundland during November, 1991.

' CALLed by: MERGE

FUNCTION NewHEADERS

DIM NewHeaderString AS STRING * HeaderLength
DIM Head(2, (HeaderLength% - 2) / 4) AS INTEGER

Head%(1, 1) = O:
Head%(1, 2) = 1:
Head%(1, 3) = 2:
Head%(1, 4) = 3:
Head%(1, 5) = 10020:
Head%(1, 6) = 6:
Head%(1, 7) = 5:
Head%(1, 8) = 1001:
Head%(1, 9) = 10008:
Head%(1, 10) = 1009:
Head%(1, 11) = 1010:
Head%(1, 12) = 1011:

FORj=0TO 1

Head%(2, 1) = 50 * Header .

Head%(2, 2) = 700 * Radar waveform

Head%(2, 3) = 4 * pc "tick” time

Head%(2, 4) = 2 * "main bang" to first radar point time delay
Head%(2,5)=$§ > pe real-time clock with FF:FF:FF corrected
Head%(2, 6) = 2 * Aircraft roll angle

Head%(2, 7) = 2 * Aircraft pitch angle

Head%(2, 8) = 1 : ' IFGain

Head%(2, 9) = 2 * "corrected” anlenna shaft angle

Head%(2, 10) = 4 * GPS Latitude

Head%(2, 11) = 4 * GPS Longitude

Head%(2, 12) = 80 * INS data string

FOR k = j + 2 * j TO HeaderLength - 2 STEP 4
MID$(NewHeaderString$, k, 2) = MKI$(Head%(j + 1, (k + 3 -2 * j)/ 4))

NEXT k
NEXT j

*Teminate header with -1 (ic., hex FFFF)

MID$(NewHeaderString$, HeaderLength - 1, 2) = MKIS(-1)

NewHEADER = NewHeaderString$

END FUNCTION

FUNCTION NewHEADER$

CESSBSPE RIS 0SSPLB00240U0S03030308863842000R3FHSFSEIHSIRAVNROBEBERCEIRARIBRESERERIIREPNEEEBO00O000URL

' CALLed by: DosFile

SUB NoFile

Message 17, " NO OPEN FILE."

Message 18, "Use Function Key 2 to open a file.”
Message 20, "PRESS ANY KEY TO CONTINUE."

x$ = "": DO UNTIL x$ <> *": x§ = INPUTS(1): LOOP

END SUB

SUB NoFile

69

SUB OpenExistingFile
* CALLed by: DosFile

SUB OpenExistingFile

FileOpen Close1$
IF Close1$ = "N" THEN EXIT SUB

DO

LOCATE 18, 1: PRINT BlankLine$

Message 17, "Eater the NAME of the file you want to OPEN"

EnterFileName Active.FileName, Valid$)
LOOP WHILE Valid$ = "N"

OPEN RTRIMS(Active.FileName) FOR BINARY AS #1

SEEK #1, LOF(1) - 1023
ReadRecord

DecodeRecord

Active. TEnd$ = ClockTime$
Active.TotalRecords = LOF(1) / 1024

SEEK #1, 1

ReadRecord

DecodeRecord
Active.Record = 2
Active.ByteLoc = ByteLoc
Active. TStart$ = ClockTime$

Dos = Active

END SUB

SEESEBBEIRISI OGBS0 000 0800028304004 080488020000 0008004035242 404030R 2004 ARRSRENCOSRRRINARIES

SUB OpenNewFile
' CALLed by: AsclIPitchRoll; CopyExbToDos

SUB OpenNewfFile (FileName$)
ValidName$ = ""
DO
FileNo% = FREEFILE
EanterFileName FileName$, Valid$
IF LTRIM$(FileName$) = " THEN EXIT SUB
OPEN RTRIMS(FileName$) FOR BINARY AS #FileNo%
IF LOF(FileNo%) <> 0 THEN
Message 17, "File " + RTRIM$(FileName$) + " already exists”
Message 18, "Eater a new filename”
Message 22, "PRESS ANY KEY TO CONTINUE"
x$ = " DO: x$ = INPUTS$(1): LOOP UNTIL x§ <> ™"
ValidName$ = "N"
END IF
CLOSE #FileNo%

LOOP WHILE ValidName$ = "N"
END SUB

70

SUB ParameterDisplay
’ Display experiment parameters and variables during screen plotting of the radar return.

* CALLed by: StepBackwards; StepForwards

SUB ParameterDisplay
LOCATE 12, 3
PRINT "Clock time: *; : COLOR 11
PRINT ClockTime$; : COLOR 15
PRINT" Pulse#: " : COLOR 11
PRINT USING "**####4"; Active.Record - 1; : COLOR 15 ~
PRINT * Pointing angle: "; : COLOR 11
PRINT USING "###.#"; Dta.ShaftAngle!: COLOR 15
LOCATE 13, 3
PRINT "Tick time : %; : COLOR 11
PRINT Dta. TickTime; : COLOR 15
LOCATE 13, 49
PRINT "Pitch angle: "; : COLOR 11
PRINT USING "###.#4"; Dta Pitch: COLOR 15
LOCATE 14, 49
PRINT " Roll angle: *; : COLOR 11
PRINT USING "###.##"; Dta.Roll: COLOR 15
LOCATE 16, 3
PRINT *Trigger delay *; : COLOR 11
PRINT USING "#####\ \"; Dia.TriggerDelay; : COLOR 15:
PRINT " meters."

' Decode and display GPS latitude and longitude, if present
IF CVI(MID$(Dta.Header, 37, 2)) = 1009 OR CVI(MID$(Dta.Header, 41, 2)) = 1010 THEN
GPSDisplay MID§(NewRecord, 771, 8)
END IF

END SUB

SRR NBRIROR LR B AN ROSSABAGEIRFIRIRAIRIPRIRI0DSREBEEB RSB ERFEERIFINIFNNBAIBS LRGS04S R0 000

FUNCTION PcClockTime$

* Decode the bytes that contain the output from the pc real-time clock. The three bytes that contain the data
* are encoded in binary coded decimal format with the lowest byte having hours, the middle byte having
* minutes, and the highest byte having seconds.
' CALLed by: DecodeRecord; MERGE
FUNCTION PcClockTime$ (PcClTime$)

DIM T AS STRING * 8

TS = "00:00:00"

Hrs§ = HEX$(CVI(MID$(PcClTime$, 1, 1) + CHRS$(0)))

Min$ = HEX$(CVI(MID$(PcCiTime$, 2, 1) + CHRS(0)))

Sec§ = HEX$(CVI(MIDS(PcCITime$, 3, 1) + CHR$(0)))

MIDS$(TS, 3 - LEN(Hrs$), LEN(Hrs$)) = Hrs$

MIDS(TS, 6 - LEN(Min$), LEN(Min$)) = Min$

MID$(TS, 9 - LEN(Sec§), LEN(Sec$)) = Sec$

PcClockTime$ = T§

END FUNCTION

71

FUNCTION PcTime$

* Decode the Pc computer "tick” time based on 18.20648 ticks per second. PcT& = CVL(MID$(NewRecord$, 751, 4))
* is passed to this function. (What determines when the tick count is zeros?)

' CALLed by: DecodeRecord; ExbTapeLog
FUNCTION PcTime$ (PcT&)

DIM T AS STRING * 11
CONST MaxTicks& = 24 * TicksPerSec * 3600

TS = "00:00:00.00" B
SELECT CASE PcT&
CASE IS > MaxTicks&
T$ = "BAD TIME "~
CASE ELSE
Hr# = PcT& / (TicksPerSec * 3600)
Mio# = (Hr# - INT(Hr#)) * 60!
Sec# = (Min# - INT(Min#)) * 60!

Hrs$ = LTRIMS(STRS(INT(H:#)))
Min$ = LTRIMS(STRS(INT(Miu#)))

Sec$ = LTRIMS(STRS(INT(SecH)))
HundredthSecs$ = LTRIMS(STRS(INT(Sec# * 100) - 100 * INT(Sec#)))

MIDS(TS, 3 - LEN(Hrs$), LEN(Hrs$)) = Hrs$

MIDS$(TS, 6 - LEN(Min$), LEN(Min$)) = Min$

MID$(TS, 9 - LEN(Sec$), LEN(SecS$)) = Sec$

MIDS(TS, 12 - LEN(HundredthSecs$), LEN(HundredthSecsS)) = HundredthSecs$
END SELECT
PcTime$ = TS

END FUNCTION

SEFEBEBNOINPEFBEPA RS E3HSF 0802 E DGR EREFE0RIRESARARNNRNEERIIFNRARRRGARARAORRINRANASISIEREICIGIERPNREINSN

FUNCTION PitchRoll!

* Convert the pitch and roll in degrees for a 14 bit shaft angle encoder. The 120 degrees is subtracted because the
' shaft angle encoder was incorrectly wired for the ERS1 mission in November of 1991,

' CALLed by: DecodeRecord

FUNCTION PitchRoll! (AS)
PitchRoll! = 360! * CVL(AS + CHRS$(0) + CHRS$(0)) / (2 * 14) - 120!

END FUNCTION

72

SUB PlotRadReturn

Plot the radar waveform and display auxiliary data below the waveform. The user can step forward one record at
a time, step backward one record at a time, or step continuously forward.

CALLed by: DosPreProcessing; ExbPreProcessing

SUB PlotRadReturn * [1/1091]
KEY OFF

BegEndByte WaveformStart%, WaveformStop%

StartByte% = WaveformStart% + HeaderLength%
StopByte% = WaveformStop% + HeaderLength%

SCREEN 12
VIEW (1, 1){600, 128)

WINDOW (StartByte%, 256)-(StopByte%, 1)
VIEW PRINT 12 TO 30

Help2
DO: LOOP WHILE INKEYS <> "*
Code% = 0

DO
Code2% = KeyCode(INKEYS)

SELECT CASE Code2%
* Select valid keys for interrupt. 1000 is added to the ALT keycodes.

CASE 1048, 1033, 70, 66, 27
Code® = Code2%

END SELECT

IF FileSource$ = "EXB" THEN
CALLS XSENSE(SenseStatus(0), IERR%)
IF SenseStatus(2) <> 0 THEN
CheckExbStatus SenseStatus(2)
Help2
END IF
END IF

SELECT CASE Code%

CASE 170, 1033 ' [F] forward one record
* [ALT-F] continuous forward

StepForwards Code%, StariByte%, StopByte%

CASE 66, 1048 ' [B] backwards 1 record
' [ALT-B] continuous backwards

* Don't step the EXABYTE 8200 backwards

IF FileSource$ = "DOS" THEN

StepBackwards Code%, StartByte%, StopByte%
ELSE

Code% =0
END IF

73

CASE 27 ' [ESC] exit display
EXIT DO
CASE ELSE > invalid key
END SELECT
Help2
IF FileSource$ = "DOS" AND Active.Record > Active. TotalRecords THEN
VIEW PRINT
LOCATE 26, 28
PRINT "END OF FILE"
DO
Code% = KeyCode(INKEY$)
LOOP UNTIL Code% = 66 OR Code% = 1048 OR Code% = 27
LOCATE 26, 28: PRINT " ’ :
END IF
LOOP

SCREEN 0
KEY ON

END SUB

74

SUB PlotRadReturn (cont.)

SUB PresentFile
' CALLed by: AscllIPitchRoll; CopyExbToDos; DosFile;
DosPreProcessing; ExbFile; ExbPreProcessing;
FileN; FirstMenu; MERGE;
RecardN

SUB PresentFile

RowOffSet® = 4
ColOffSet® = 16

SELECT CASE FileSource$ B
CASE "DOS”
Active = Dos
CASE "EXB"
Active = Exb
CASE ELSE

ResetActiveStats
ResetDta

END SELECT

RecordNumber& = Active.Record - 1
COLOR 3, 0: LOCATE RowOffSet%, ColOffSet% - 1
PRINT CHR$(201); STRINGS(52, CHR$(205)); CHR$(187)

FORi=0TO 4
LOCATE RowOffSet% + i + 1, ColOffSet% - 1: PRINT CHR$(186)
LOCATE RowOffSet® + i + 1, ColOffSet% + 52: PRINT CHR$(186)
NEXT
LOCATE RowOffSet% + 6, ColOffSet% - 1
PRINT CHR$(200); STRING$(52, CHR$(205)); CHRS$(188)
COLOR 7, 0: LOCATE RowOffSet% + 1, ColOffSet%® + 1
PRINT "FILE:"
COLOR 4,7: LOCATE RowOffSet% + 1, ColOffSet% + 7
PRINT RTRIMS$(Active.FileName)
COLOR 7,0: LOCATE RowOffSet% + 2, ColOffSet% + 1
PRINT "TOTAL RECORDS: ™;
COLOR 4, 7 PRINT Active.TotalRecords
COLOR 7,0: LOCATE RowOffSet% + 3, ColOffSet% + 1
PRINT "STARTING TIME: *;
COLOR 4,7: PRINT" " + Active.TStart + " ";
COLOR 7, 0: PRINT " ENDING TIME: *;
COLOR 4,7: PRINT"™ " + Active. TEnd + " "
COLOR 7, 0: LOCATE RowOffSet% + 5, ColOffSet% + 1
PRINT "PRESENT RECORD #: ";
COLOR 4, 7: PRINT RecordNumber&;
COLOR 7, 0: PRINT " TIME: ";
COLOR 4,7: PRINT " " + ClockTime$
COLOR 7, 0
END SUB

75

SUB ReadRecord

* CALLed by: CopyExbToDos; DosPreProcessing; ExbPreProcessing;
ExbTapelog; FileN; MERGE;
OpenExistingFile; RecordN; StepBackwards;
StepForwards; Waterfall
SUB ReadRecord
SELECT CASE FileSource$
CASE "DOS”

NewRecord = INPUT$(1024, 1) ,

CASE "EXB"
CALLS XRCHR(NewRecord, 1, [ERR%)

END SELECT
Active.Record = Active.Record + 1

END SUB

BEPSESH0 0000 PRI R0 NS00 RSBEROPSASISINRINONISRRINIRRRNNINENEEEOSOOOSESSIRNBURIERNISNIRONIROERBEOSORS
SUB RecordN
* Move record pointer to record number N. For EXABY'TE files the pointer is positioned
* at the end of record N while for DOS files the pointer is at the beginning of record N.
* CALLed by: AscIIPitchRoll; CopyExbToDos; DosPreProcessing;
’ ExbPreProcessing

SUB RecordN
S& = 0!
SELECT CASE FileSource$
CASE "DOS"
DO

CLS
PresentFile
Message 17, "Enter the first record number for processing.”
EnterRecord S&
IF S& = Active.Record - 1 THEN
EXIT SUB
END IF

IF S& > LOF(1) / 1024 THEN
PresentFile
Text$ = "Your starting record number is beyond the end of the file.”
Message 17, Text$
Message 18, "Eater a new number.”
BEEP
SLEEP 1
END IF

LOOP WHILE S& > LOF(1) / 1024
Active.Record = S&
SEEK #1, (S& - 1) * 1024 + 1

CASE "EXB"

76

SUB RecordN (cont.)

RecordsMoved& = 0
Message 17, "Enter the first record number for processing.
EnterRecord S&
IF S& = Active.Record - 1 THEN
EXIT SUB
END IF

IF S& = 1 AND Active.FileNo = 1 THEN
Rewind
ResetExbStats
Active = Exb -
ReadRecord
DecodeRecord
Active.TStart = ClockTime$
EXIT SUB
END IF

IF Active.Record = 0 THEN
ReadRecord
DecodeRecord
Active. TStart = ClockTime$
END IF

Jump& = S& - Active.Record
MoveRecords% = SGN(Jumpé) * 32000
IF (Jump& < 0) AND (S& < 500) AND Active.Record > 1000 THEN
* If it is necessary to move backwards to near the beginning of the file,
* it is quicker to go to the first record and then step forward.
CALLS XSKIPF(-1, IERR%)
CALLS XSKIPF(1, IERR%)
Jump& =S& - 1
END IF

CALLS XSENSE(SenseStatus(0), IERR%)

DO WHILE (ABS(Jump&) > 0) AND (SenseStatus(2) < 128)
IF ABS(Jump&) <= 32000 THEN MoveRecords% = Jump&
CALLS XSPACE(MoveRecords%, IERR%)
RecordsMoved& = RecordsMoved& + MoveRecords%
Jump& = Jump& - MoveRecords%

DecodeRecord
Update
LOOP

CALLS XSENSE(SenseStatus(0), [ERR%)

IF SenseStatus(0) AND 128 THEN
* Test if trying to jump ahead more records than are in the file.
NonRecords& = SenseStatus(4) * (256! * 2) + SenseStatus(5) * 256! + SenseStatus(6)
RecardsMoved& = RecordsMoved& - NonRecords&
END IF
IF (SenseStatus(2) AND 128) THEN * If EOF.
Active.TotalRecords = Active.Record + RecordsMoved&
Message 17, "EOF reached.”
CALLS XSKIPF(-1, IERR%)
CALLS XSPACE(-1, IERR%)
Active.Record = Active.Record - 1
END IF

CALLS XSENSE(SenseStatus(0), IERR%)

77

IF (SenseStatus(2) AND 8) THEN * If EOD.

Message 17, "EOD reached. Read head moved past last EOF."
Text$ = "Tape will be positioned at end of last file."
Message 18, Text$

IF Active.Record = 0 THEN

CALLS XSKIPF(-1, IERR%)
CALLS XSPACE(-1, IERR%)
RecordsMoved& = 0

ELSE

Message 19, "NOTE: Last file does not have an EOF."
CALLS XSPACE(-1, [ERR%)
RecordsMoved& = 0

END IF

END IF

Active. Record = Active.Record + RecordsMoved&
ReadRecord

DecodeRecord

Update

IF Active.Record = Active.TotalRecords THEN
Active.TEnd = ClockTime$

ELSEIF Active.Record = 1 THEN
Active. TStart = ClockTime$

END IF

Active.ByteLoc = (Active.Record - 1) * 1024 + 1
Exb = Active

END SELECT

END SUB

78

SUB RecordN (cont.)

SUB ResetActiveStats
' CALLed by: MAIN; FirstMenu; PresentFile

SUB ResetActiveStats
Active.FileName = SPACE$(40)
Active.FileNo = 0
Active. TStart = " "
Active. TEnd = " "
Active.Record = 0
Active.TotalRecords = 0
Active.ByteLoc = 0
END SUB _

SEBENSRBIVES ISR ER RSO ER 0BRGN ERERRSBRPB34 S4B RBANFRER 00402 E2 LA 2NDR00 020000000

SUB ResetDosStats

' CALLed by: MAIN; DosFile; EnterFileName; FileOpen
SUB ResetDosStats

CLOSE #1

Dos.FileName = SPACE$(40)

Dos.FileNo = 0

Dos.TStart = * "

Dos. TEnd = " "

Dos.Record = 0

Dos. TotalRecords = O

Dos.ByteLoc = 0
END SUB

SREPRREPRRN00400 0008220400020 %S2 4340 ADEPHERIRIIFSVSPRBSICARBBEDESRERERERRGGA0E IR0 205030000880 0

SUB ResetDta
> CALLed by: MAIN; FirstMenu; PresentFile

SUB ResetDua
Dta.Header = SPACES(HeaderLength%)
Dta.Radar = SPACE$(700)
Dta.AccurateTime = SPACES$(11)
Dta.TickTime = SPACES$(11)
Dta.TrueTime = SPACES(8)
Dta.TriggerDelay = 0
Dta.Picch =0
Dta.Roll =0
Dta.ShaftAngle = 0

END SUB

SEEBABSD OIS LI ARARNEIE S AR 4E LS00 00420008050 0R NS RAPANERGEBEBRSSFBEREIEIER LRIV EB 0004004000300

SUB ResetExbStats
' CALLed by: MAIN; ExbFile; FileN; RecordN

SUB ResetExbSuats
Exb.FileNo =1
Exb.TStart = " "
Exb.TEnd = " "
Exb.TotalRecords = 0
Exb.FileName = RTRIMS("Exabyte file # *) + "1"

Exb.Record = 1
Exb.Byteloc = 1
END SUB

79

SUB Rewind
' CALLed by: ExbTapeLog; RecordN

SUB Rewind ' Rewind EXABY'TE tape to LBOT
Message 17, "REWINDING TAPE."

CALLS XREWND(IERR %)
Message 17, "COMPLETED."

END SUB

........‘......‘.‘..'.OQ‘.‘.‘............‘..........‘.‘...‘....‘....l...O‘.......’...........‘.....0........
FUNCTION RotationAngle!
* Decode the rotation angle of the antenna shaft as implemented after September 1991.

CALLed by: DecodeRecord; ShaftAngle

* INPUT: binary coded decimal degrees to 0.1 degrees
' OUTPUT: decimal degrees)

FUNCTION RotationAngle! (RotAng$) ' [12/17/1]
LefiBits% = CVI(MID$(RotAng$, 1, 1) + CHRS(0))
RightBits% = CVI(MID$(RotAng$, 2, 1) + CHRS$(0))
Angl! = 100! * ((RightBits% AND 48) \ 16) + 10! * (RightBits% AND 15)
Ang2! = .1 * (LeftBits% AND 15) + 1! * ((LefBits% AND 255) \ 16)

RotationAngle! = Angl! + Ang2!

END FUNCTION
SRR 200 BUBRRNEBRRAR NP RBREEAERBARBHR ARSI RS SRIBRIRSRADROBVROPSERERISEREERARSBARNSSEIESSAPININRENNO0S
SUB ShaftAngle$
' "Correct” the raw antenna shaft angle values for missing bits. The corrected angle is accurate to about +/- 0.4 deg.
' CALLed by: DecodeRecord; MERGE
FUNCTION ShaftAngle$

STATIC Anglel AS SINGLE, Angle2 AS SINGLE

Angle2 = Anglel
Angle$ = MID$(NewRecord$, 767, 2)

Anglel = RotationAngle!(Angle$)

* Test and comrect for missing 1 deg. bit.
IF (Angle2 - Anglel < 0) OR (Angle2 - Anglel >= 1) THEN ' NOTE: This test doesn’t work correctly
when ’ the angle goes across 360 degrees.
Anglel = Anglel + 1!
END IF

a4% = INT((INT(Angle1)) / 100)
a3% = INT((INT(Angle1) - a4% * 100) / 10)

a2% = INT(Anglel) - a4% * 100 - a3% * 10

a1% = INT((Angle1 - INT(Angle1)) * 10)

BedAngle®% =al% + 22 4)*a2% + (22 8) *a3% + (2 * 12) * a4%
BodAngle% = BedAngle% + (CVI(AngleS) AND &HC000)

ShaftAngle$ = MKIS(BcdAngle%)

END FUNCTION

80

SUB STARTINGTIME
* Find the earliest time between the mission starting time, the first INS time, and the first GPS time.

* CALLed by: MERGE
SUB STARTINGTIME (StartTime&, MT&, IT&, GT&)

Tn=3
DIM Times{Tn) AS LONG

Times&(1) = MT&: Times&(2) = IT&: Times&(3) = GT&

* Find the carliest time and use as the mission starting time. Algorithm assumes less than 2 hours (7200 secs) between the earliest
* and latest starting times for acquiring GPS and INS data and the operalor entered "Mission” starting time.
DO

MINMAX Times&(), Tn, MinTime&, MinElement, MaxTime&, MaxElement

IF MaxTime& > MinTime& + 7200 THEN

Times&(MinElement) = Times&(MinElement) + 86400

END IF :

LOOP UNTIL MaxTime& <= MinTime& + 7200

StartTime& = Times&(MinElement)
ERASE Times&

END SUB

CEORBBELRERS0E G020 RISRRLERODERLCECOPLAR I DERGRABEBRARGBIBENGRERONPALIBNESERRRIRROLORNUREINIORRRGOES

SUB StepBackwards
' Steps a DOS file backwards one record at a time. NOTE: With the present EXABYTE drive, it isn’t
’ practical to step backward through a file one record at a time.

' CALLed by: PlotRadarReturn
SUB StepBackwards (C%, StrBy%, StpBy%)
Active.Record = Active.Record - 2

* Test for beginning of file.

IF Active.Record > 0 THEN

SEEK 1, ByteLoc&

ReadRecord

DecodeRecord

ParameterDisplay

WaveFormPlot SuBy%, StpBy%
ELSE * At beginning of file.

Active.Record = 1

SEEK 1, ByteLoc&

ParameterDisplay

WaveFormPlot 1, 1

VIEW PRINT

LOCATE 26, 28

PRINT "BEGINNING OF FILE"

DO

Keystroke C%

LOOP UNTIL C% = 70 OR C% = 33 OR C% =27

LOCATE 26, 28: PRINT " "
END IF

IFC% =66 THENC% =0

END SUB

81

SUB StepForwards

'’ CALLed by: PlotRadarReturn

SUB StepForwards (C%, StrBy%, StpBy%)

ReadRecord

DecodeRecord
ParameterDisplay
WaveFormPlot StrBy%, StpBy%
IFC%=70THENC% =0

END SUB -
AEEREBEBRIRBRIBIRORRARONIC000ERENEALARER0ROPNRERFRAOINROR0RERS4S04R030 4402034000408 4000R4244300883009
FUNCTION TimeGPS&
> Read the time in ASCII from the GPS file and convert to a long integer. Eight
' seconds are subtracted from the time to bring it into correspondence with UTC.
' CALLed by: MERGE; MergeGPS
FUNCTION TimeGPS& (D§)
Tb% = INSTR(DS, ",")
Te% = INSTR(TV% + 1, DS, *,")
Gps$ = MIDS(DS, Tb% + 1, Te% - Tv% - 1)
IF Te% - To% = 9 THEN
Hr& = VAL(MID$(Gps$, 1, 2)) * 3600
Min& = VAL(MIDS$(GpsS$, 3, 2)) * 60
Sec& = VAL(MID$(Gps$, 5)) - 8
TimeGPS& = Hr& + Min& + Sec&
ELSE * If GPS field is less than 8 characters put appropriate code here.
END IF
END FUNCTION

SEESUSOSSBSEBEEICIHE SR 002008000000 008 0800080005000 05ASRRERESRRERGENRRERR0LARABRERIRICIGISSRRGOS

' CALLed by: ~ AscllPitchRoll; CopyExbToDos; ExbPreProcessing;

RecordN

SUB Update

COLOR 7, 0: LOCATE RowOffSet% + 5, ColOffSet% + 1

PRINT "PRESENT RECORD #: *;

COLOR 4, 7: PRINT Active.Record - 1;

COLOR 7, 0: PRINT " TIME: %

COLOR 4, 7: PRINT " " + ClockTime$;

COLOR 7, 0: PRINT" " > Blanks some previous characters

END SUB

82

SUB Update

' CALLed by: EnterFileName
SUB ValidROWSFile (Vo$, FileNo%)
SELECT CASE LOF(FileNo%) / 1024
CASE IS <> INT(LOF(FileNo%) / 1024)

Message 17, "Probable non-ROWS or corrupted data file"

Va$ = "N"
SLEEP 2
CASE 0

Message 17, RTRIM$(Active.FileName)
Message 19, "does not exist”

KILL Active.FileName

vns = lNl

CASE ELSE
Active.Record = 1
Active.ByteLoc = 1
vns = -Y!

END SELECT

END SUB

SUB ValidROWSFile

CEABHEERBAGEINERO BB GS SSRGS SSES0IREICIRESRRSFIBABLEFEBEBERCBEIRIREPEIEIRINSO IS S S SNSRI EINIRIGS

' Display the PREROWS program version. (9/23/92)
' Called by: FirstMenu
SUB Version

CLs

Message 12, "PREROWS version 2 (10/1392)"
Message 14, "Use with ERS-1 mission and later”
IDLE

END SUB

SUB Version

83

SUB Waterfall
' Color coded waterfall display of ROWS pulse data.

[

> Convert a byte to a 16 bit integer by appending an ASCII O to the righthand byte of the word.
' CALLed by: DosPreProcessing; ExbPreProcessing
SUB Waterfall

DIM FileByteLength AS LONG
STATIC NumOfRecords&

KEY OFF
StartRecord& = Active.Record
SELECT CASE FileSource$

CASE "DOS"
FileByteLength = Active.TotalRecords * 1024
CASE "EXB"

IF NumOfRecords& <= Active.Record + 1 THEN
CLS
Text$ = "Eater the largest valid record number for processing”
Message 15, Text$
INPUT ; NumOfRecords&
END IF

FileByteLength = NumOfRecords& * 1024
END SELECT

IF Active.Record >= (FileByteLength / 1024 - 1) THEN
CLS
Message 17, "NOTHING TO DO"
SLEEP 2
EXIT SUB
END IF

BegEndByte WaveformStart%, WaveformStop%
ColorLevels

StartBye% = WaveformStart% + HeaderLength%
StopByte% = WaveformStop% + HeaderLength%

ViewX1% = 30: ViewY1% = 40

ViewX2% = 619: ViewY2% = 459

WindowX1% = 0: WindowY 1% = StartByte%

WindowX2% = ViewX2%: WindowY2% = StartByte% + ViewY2%

SCREEN 12

VIEW (ViewX1%, ViewY1%)(ViewX2%, ViewY2%)
WINDOW (WindowX1%, WindowY 1%){(WindowX2%, WindowY2%)

IF (FileByteLength - Active.ByteLoc + 11) / 1024 >= WindowX2% THEN
Wdth% = WindowX2%

ELSE
Wdith% = (FileByteLength - Active.ByteLoc + 1) / 1024

END IF

84

SUB Waterfall (cont.)
IF (SwpByte% - StartByte%) > 479 THEN StopByte% = StartByte% + 479

ColCoord% = ViewX1% / 8! - 3!
RowCoord% = 25! - (1! * (StopByte% - StartByte% - ViewY1%) / 18!)

StartRecord& = Active.Record
ReadRecord

DecodeRecord
Active.ByteLoc = ByteLoc

LOCATE RowCoord%, ColCoord% R
PRINTUSING N\ \"; ClockTime$
k=0

DO WHILE Active.Record < Wdth% + StartRecord& AND Active.Record <= FileByteLength - 1023
k=k+1)
IF KeyCode%(INKEYS) = 27 THEN EXIT DO
ReadRecord
DecodeRecord
FOR j = StartByte% TO StopByie%
PSET (k, j), ColorLevel(CVI(MID$(NewRecord, j, 1) + CHR$(0)))
NEXT j
LOOP

LOCATE RowCoord%, Wdth% / (8! * WindowX2% / 620!) - §
PRINTUSING "\ \%; ClockTime$

DO: k$ = INKEYS: LOOP WHILE k§ <> ""
DO: k$ = INKEYS: LOOP WHILE k$ = *"

SCREEN 0
Active.ByteLoc = ByteLoc

END SUB

SEUSEREOREDSACERIB RS EBLADN PGP IR IRIBEDEVECEP RGO 2405000 RSG AR RREBERRPR DRSS S4E203 028300430080
SUB WaveFormPlot
* CALLed by: StepBackwards; StepForwards

SUB WaveFormPlot (StartByte%, StopByte%)

DIM WaveForm(700) AS INTEGER
REDIM WaveForm(StartByte% TO StopByte%) AS INTEGER

CLS 1
WaveForm%(StartByte%) = CVI(MID$(Dta.Radar, StartByte%, 1) + CHRS$(0))

FOR i = StartByte% + 1 TO StopByte%
WaveForm%(i) = CVI(MID$(Dta.Radar, i - HeaderLength%, 1) + CHR$(0))
LINE (i - 1, WaveForm%(i - 1)), WaveForm%(3)), 10

NEXT

END SUB

85

' CALLed by: CopyExbToDos; MERGE
SUB WriteRecord (FileSource$, FileNumber%)
SELECT CASE FileSource$
CASE "DOS"
PUT FileNumber%, , NewRecord
CASE "EXB"

CALLS XWRCHR(NewRecord, 1, IERR%)
DriveReady

END SELECT

END SUB

86

SUB WriteRecord

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructi searching existing data , gathering
and malintaining the data needed, and completing and reviewing the coflection of | 1. Send comments regarding this burden estimate of any other -poa of this oolloctbn of
information, indluding suggestions for reducing this burden, 10 Washington Headquartérs Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suke
1204, Arlington, VA 222024302, and to the Office of Management and Budget, P k Reduction Project (0704-0188), Washington, DC_20503.
1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1993 Technical Memorandum

4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS

Radar Ocean Wave Spectrometer (ROWS) Preprocessing .

Program (PREROWS2.EXE) 972

User's Manual and Program Description
6. AUTHOR(S)

C.R. Vaughn)
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Laboratory for Hydrospheric Processes

Goddard Space Flight Center 93B00031

Wallops Flight Facility

Wallops Island, Virginia
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

, . L. . AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Washington, D.C. 20546-0001 TM-104579

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category 48

13. ABSTRACT (Maximum 200 words)

This Technical Memorandum is a user's manual with additional program documentation for the computer program
PREROWS2.EXE. PREROWS2 works with data collected by an ocean wave spectrometer that uses radar (ROWS) as an
active remote sensor. The original ROWS data acquisition subsystem was replaced with a PC in 1990. PREROWS2.EXE
is a compiled QuickBasic 4.5 program that unpacks the recorded data, displays various variables, and provides for copying
blocks of data from the original 8mm tape to a PC file.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computer Program, User's Manual, ROWS, Radar, Oceanography : 87
16. PRICE CODE
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. 239-18, 298-102

